J. J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms,” Opt. Lett. 35, 947–949 (2010).

[CrossRef]
[PubMed]

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate algorithm for the computation of complex linear canonical transforms,” J. Opt. Soc. Am. A 27, 1896–1908 (2010).

[CrossRef]

K. K. Sharma, “Fractional Laplace transform,” Signal, Image and Video Processing 4, 377–379 (2009).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648(2009).

[CrossRef]

F. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 105802 (2009).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

J. Zhao, R. Tao, and Y. Wang, “Sampling rate conversion for linear canonical transform,” Signal Process. 88, 2825–2832 (2008).

[CrossRef]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “An additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

B.-Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canonical transform,” Signal Process. 87, 983–990 (2007).

[CrossRef]

B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical transform and their applications,” Science in China Ser. F 49, 592–603 (2006).

[CrossRef]

A. Stern, “Sampling of linear canonical transformed signals,” Signal Process. 86, 1421–1425 (2006).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006).

[CrossRef]
[PubMed]

H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981).

[CrossRef]

H. O. Bartelt, K.-H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).

[CrossRef]

P. A. Bélanger, A. Hardy, and A. E. Siegman, “Resonant modes of optical cavities with phase-conjugate mirrors,” Appl. Opt. 19, 602–609 (1980).

[CrossRef]
[PubMed]

H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

H. O. Bartelt, K.-H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

H. O. Bartelt, K.-H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).

[CrossRef]

J. W. Brown and R. V. Churchill, Complex Variables and Applications (McGraw- Hill, 2004).

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

J. W. Brown and R. V. Churchill, Complex Variables and Applications (McGraw- Hill, 2004).

B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical transform and their applications,” Science in China Ser. F 49, 592–603 (2006).

[CrossRef]

J.-J. Ding, “Research of fractional Fourier transform and linear canonical transform,” Ph.D. dissertation (National Taiwan University, 2001).

F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981).

[CrossRef]

H. T. Yura, B. Rose, and S. G. Hanson, “Dynamic laser speckle in complex ABCD optical systems,” J. Opt. Soc. Am. A 15, 1160–1166 (1998).

[CrossRef]

H. T. Yura, S. G. Hanson, and T. P. Grum, “Speckle: statistics and interferometric decorrelation effects in complex ABCD optical systems,” J. Opt. Soc. Am. A 10, 316–323 (1993).

[CrossRef]

H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Space–bandwidth ratio as a means of choosing between Fresnel and other linear canonical transform algorithms,” J. Opt. Soc. Am. A 28, 786–790 (2011).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms,” Opt. Lett. 35, 947–949 (2010).

[CrossRef]
[PubMed]

J. J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648(2009).

[CrossRef]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “An additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

F. Jia, “Study on the principle and applications of digital holography,” Master’s dissertation (Northwest University, 2008).

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate algorithm for the computation of complex linear canonical transforms,” J. Opt. Soc. Am. A 27, 1896–1908 (2010).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

B.-Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canonical transform,” Signal Process. 87, 983–990 (2007).

[CrossRef]

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 105802 (2009).

[CrossRef]

H. O. Bartelt, K.-H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).

[CrossRef]

F. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate algorithm for the computation of complex linear canonical transforms,” J. Opt. Soc. Am. A 27, 1896–1908 (2010).

[CrossRef]

F. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

K. K. Sharma, “Fractional Laplace transform,” Signal, Image and Video Processing 4, 377–379 (2009).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Space–bandwidth ratio as a means of choosing between Fresnel and other linear canonical transform algorithms,” J. Opt. Soc. Am. A 28, 786–790 (2011).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms,” Opt. Lett. 35, 947–949 (2010).

[CrossRef]
[PubMed]

J. J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648(2009).

[CrossRef]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “An additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937(2005).

[CrossRef]

S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994).

[CrossRef]
[PubMed]

A. Stern, “Sampling of linear canonical transformed signals,” Signal Process. 86, 1421–1425 (2006).

[CrossRef]

J. Zhao, R. Tao, and Y. Wang, “Sampling rate conversion for linear canonical transform,” Signal Process. 88, 2825–2832 (2008).

[CrossRef]

B.-Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canonical transform,” Signal Process. 87, 983–990 (2007).

[CrossRef]

B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical transform and their applications,” Science in China Ser. F 49, 592–603 (2006).

[CrossRef]

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 105802 (2009).

[CrossRef]

J. Zhao, R. Tao, and Y. Wang, “Sampling rate conversion for linear canonical transform,” Signal Process. 88, 2825–2832 (2008).

[CrossRef]

B.-Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canonical transform,” Signal Process. 87, 983–990 (2007).

[CrossRef]

B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical transform and their applications,” Science in China Ser. F 49, 592–603 (2006).

[CrossRef]

K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, 1979).

H. T. Yura, B. Rose, and S. G. Hanson, “Dynamic laser speckle in complex ABCD optical systems,” J. Opt. Soc. Am. A 15, 1160–1166 (1998).

[CrossRef]

H. T. Yura, S. G. Hanson, and T. P. Grum, “Speckle: statistics and interferometric decorrelation effects in complex ABCD optical systems,” J. Opt. Soc. Am. A 10, 316–323 (1993).

[CrossRef]

H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987).

[CrossRef]

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 105802 (2009).

[CrossRef]

J. Zhao, R. Tao, and Y. Wang, “Sampling rate conversion for linear canonical transform,” Signal Process. 88, 2825–2832 (2008).

[CrossRef]

F. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987).

[CrossRef]

H. T. Yura, S. G. Hanson, and T. P. Grum, “Speckle: statistics and interferometric decorrelation effects in complex ABCD optical systems,” J. Opt. Soc. Am. A 10, 316–323 (1993).

[CrossRef]

H. T. Yura, B. Rose, and S. G. Hanson, “Dynamic laser speckle in complex ABCD optical systems,” J. Opt. Soc. Am. A 15, 1160–1166 (1998).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937(2005).

[CrossRef]

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate algorithm for the computation of complex linear canonical transforms,” J. Opt. Soc. Am. A 27, 1896–1908 (2010).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Space–bandwidth ratio as a means of choosing between Fresnel and other linear canonical transform algorithms,” J. Opt. Soc. Am. A 28, 786–790 (2011).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

H. O. Bartelt, K.-H. Brenner, and A. W. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).

[CrossRef]

F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981).

[CrossRef]

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 105802 (2009).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms,” Opt. Lett. 35, 947–949 (2010).

[CrossRef]
[PubMed]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “An additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994).

[CrossRef]
[PubMed]

B. Deng, R. Tao, and Y. Wang, “Convolution theorems for the linear canonical transform and their applications,” Science in China Ser. F 49, 592–603 (2006).

[CrossRef]

B.-Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canonical transform,” Signal Process. 87, 983–990 (2007).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648(2009).

[CrossRef]

J. Zhao, R. Tao, and Y. Wang, “Sampling rate conversion for linear canonical transform,” Signal Process. 88, 2825–2832 (2008).

[CrossRef]

A. Stern, “Sampling of linear canonical transformed signals,” Signal Process. 86, 1421–1425 (2006).

[CrossRef]

K. K. Sharma, “Fractional Laplace transform,” Signal, Image and Video Processing 4, 377–379 (2009).

[CrossRef]

K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, 1979).

J.-J. Ding, “Research of fractional Fourier transform and linear canonical transform,” Ph.D. dissertation (National Taiwan University, 2001).

F. Jia, “Study on the principle and applications of digital holography,” Master’s dissertation (Northwest University, 2008).

J. W. Brown and R. V. Churchill, Complex Variables and Applications (McGraw- Hill, 2004).