Abstract

Gloss is a feature of visual appearance that arises from the directionally selective reflection of light incident on a surface. Especially when a distinct reflected image is perceptible, the luminance distribution of the illumination scene above the sample can strongly influence the gloss perception. For this reason, industrial glossmeters do not provide a satisfactory gloss estimation of high-gloss surfaces. In this study, the influence of the conditions of illumination on specular gloss perception was examined through a magnitude estimation experiment in which 10 observers took part. A light booth with two light sources was utilized: the mirror image of only one source being visible in reflection by the observer. The luminance of both the reflected image and the adjacent sample surface could be independently varied by separate adjustment of the intensity of the two light sources. A psychophysical scaling function was derived, relating the visual gloss estimations to the measured luminance of both the reflected image and the off-specular sample background. The generalization error of the model was estimated through a validation experiment performed by 10 other observers. In result, a metric including both surface and illumination properties is provided. Based on this metric, improved gloss evaluation methods and instruments could be developed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Lighting Vocabulary CIE Publication 17.4, ISBN: 3900734070 (IEC/CIE, 1987).
  2. American Society for Testing and Materials “Standard test methods for measurement of gloss of high-gloss surfaces by goniophotometry,” Test Method E430-05 (ASTM, 2005).
  3. American Society for Testing and Materials, “Standard test methods for instrumental measurement of distinctness-of-image gloss of coating surfaces,” Test Method D5767 (ASTM, 2004).
  4. American Society for Testing and Materials, “Standard test method for specular gloss,” Test Method D523 (ASTM, 2008).
  5. International Organization for Standardization, “Paints and varnishes—determination of specular gloss of non-metallic paint films at 20 degrees, 60 degrees and 85 degrees,” Standard 2813 (ISO, 1994).
  6. F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
    [CrossRef]
  7. G. Obein, K. Knoblauch, and F. Viénot, “Difference scaling of gloss: nonlinearity, binocularity, and constancy,” J. Vis. 4 (9), 711–720 (2004).
    [CrossRef] [PubMed]
  8. W. Ji, M. R. Pointer, R. M. Luo, and J. Dakin, “Gloss as an aspect of the measurement of appearance,” J. Opt. Soc. Am. A 23, 22–33 (2006).
    [CrossRef]
  9. R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18, 19–39 (1937).
  10. Y.-H. Ho, M. S. Landy, and L. T. Maloney, “Conjoint measurement of gloss and surface texture,” Psychol. Sci. 19, 196–204(2008).
    [CrossRef] [PubMed]
  11. R. W. Fleming, A. Torralba, and E. H. Adelson, “Specular reflection and the perception of shape,” J. Vis. 4 (9), 790–820 (2004).
    [CrossRef]
  12. J. F. Norman, J. T. Todd, and G. A. Orban, “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information,” Psychol. Sci. 15, 565–570 (2004).
    [CrossRef] [PubMed]
  13. P. Vangorp, J. Laurijssen, and P. Dutré, “The influence of shape on the perception of material reflectance,” ACM Trans. Graph. 26, 77 (2007).
    [CrossRef]
  14. G. Wendt, F. Faul, V. Ekroll, and R. Mausfeld, “Disparity, motion, and color information improve gloss constancy performance,” J. Vis. 10 (9), 7 (2010).
    [CrossRef] [PubMed]
  15. B. Xiao and D. H. Brainard, “Surface gloss and color perception of 3D objects,” Vis. Neurosci. 25, 371–385 (2008).
    [CrossRef] [PubMed]
  16. M. Mikula, M. Ceppan, and K. Vasco, “Gloss and goniocolorimetry of printed materials,” Color Res. Appl. 28, 335–342 (2003).
    [CrossRef]
  17. F. B. Leloup, M. R. Pointer, P. Dutré, and P. Hanselaer, “Geometry of illumination, luminance contrast, and gloss perception,” J. Opt. Soc. Am. A 27, 2046–2054 (2010).
    [CrossRef]
  18. R. O. Dror, A. S. Willsky, and E. H. Adelson, “Statistical characterization of real world illumination,” J. Vis. 4 (9), 821–837(2004).
    [CrossRef] [PubMed]
  19. R. W. Fleming, R. O. Dror, and E. H. Adelson, “Real-world illumination and the perception of surface reflectance properties,” J. Vis. 3 (5), 347–368 (2003).
    [CrossRef] [PubMed]
  20. K. Doerschner, H. Boyaci, and L. T. Maloney, “Estimating the glossiness transfer function induced by illumination change and testing its transitivity,” J. Vis. 10 (4), 8 (2010).
    [CrossRef] [PubMed]
  21. M. Olkkonen and D. H. Brainard, “Perceived glossiness and lightness under real-world illumination,” J. Vis. 10 (9), 5 (2010).
    [CrossRef] [PubMed]
  22. F. Pellacini, J. A. Ferwerda, and D. P. Greenberg, “Toward a psychophysically-based light reflection model for image synthesis,” in Proceedings of SIGGRAPH’00 (Association for Computing Machinery, 2000), pp. 55–64.
  23. J. Tumblin, J. K. Hodgins, and B. K. Guenter, “Two methods for display of high contrast images,” ACM Trans. Graphics 18, 56–94 (1999).
    [CrossRef]
  24. G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291–306 (1997).
    [CrossRef]
  25. J. B. Phillips, J. A. Ferwerda, and S. Luka, “Effects of image dynamic range on apparent surface gloss,” in Proceedings of the 17th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2010), pp. 193–197.
    [PubMed]
  26. J. B. Phillips, J. A. Ferwerda, and A. Nunziata, “Gloss discrimination and eye movement,” Proc. SPIE 7527, 75270Z (2010).
    [CrossRef]
  27. K. Doerschner, L. T. Maloney, and H. Boyaci, “Perceived glossiness in high dynamic range scenes,” J. Vis. 10 (9), 11 (2010).
    [CrossRef] [PubMed]
  28. F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47, 5454–5467 (2008).
    [CrossRef] [PubMed]
  29. G. A. Gescheider, “Psychophysical scaling,” Ann. Rev. Psychol. 39, 169–200 (1988).
    [CrossRef]
  30. J. A. Ferwerda, F. Pellacini, and D. P. Greenberg, “A psychophysically-based model of surface gloss perception,” Proc. SPIE 4299, 291–301 (2001).
    [CrossRef]
  31. W. S. Torgerson, Theory and Methods of Scaling (Wiley, 1958).
  32. E. C. Poulton, “The new psychophysics: six models for magnitude estimation,” Psychol. Bull. 69 (1), 1–19 (1968).
    [CrossRef]
  33. S. S. Stevens, “The direct estimation of sensory magnitudes—loudness,” Am. J. Psychol. 69 (1), 1–25 (1956).
    [CrossRef] [PubMed]
  34. Commission Internationale de l’Eclairage, “Contrast and visibility” Technical Report 95:1992 (CIE, 1992).
  35. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
    [CrossRef]
  36. H. W. Bodmann, P. Haubner, and A. M. Marsden, “A unified relationship between brightness and luminance,” in CIE Proceedings, Kyoto Session 1979 (CIE, 1980), pp. 99–102.
  37. D. Jameson and L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
    [CrossRef] [PubMed]
  38. L. M. Hurvich, “Color vision deficiencies,” in Handbook of Sensory Physiology, Vol. VII/4: Visual Psychophysics, D.Jameson and L.M.Hurvich, eds. (Springer-Verlag, 1972), pp. 582–624.
  39. R. W. G. Hunt, Measuring Colour (Fountain, 2001).
  40. American Society for Testing and Materials, “Standard test method for visual evaluation of gloss differences between surfaces of similar appearance,” Test Method D4449 (ASTM, 2008).
  41. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).
  42. J. Beck and K. Prazdny, “Highlights and the perception of glossiness,” Percept. Psychophys. 30, 407–410 (1981).
    [CrossRef] [PubMed]
  43. J. T. Todd, J. F. Norman, and E. Mingolla, “Lightness constancy in the presence of specular highlights,” Psychol. Sci. 15, 33–39 (2004).
    [CrossRef] [PubMed]

2010 (6)

G. Wendt, F. Faul, V. Ekroll, and R. Mausfeld, “Disparity, motion, and color information improve gloss constancy performance,” J. Vis. 10 (9), 7 (2010).
[CrossRef] [PubMed]

K. Doerschner, H. Boyaci, and L. T. Maloney, “Estimating the glossiness transfer function induced by illumination change and testing its transitivity,” J. Vis. 10 (4), 8 (2010).
[CrossRef] [PubMed]

M. Olkkonen and D. H. Brainard, “Perceived glossiness and lightness under real-world illumination,” J. Vis. 10 (9), 5 (2010).
[CrossRef] [PubMed]

J. B. Phillips, J. A. Ferwerda, and A. Nunziata, “Gloss discrimination and eye movement,” Proc. SPIE 7527, 75270Z (2010).
[CrossRef]

K. Doerschner, L. T. Maloney, and H. Boyaci, “Perceived glossiness in high dynamic range scenes,” J. Vis. 10 (9), 11 (2010).
[CrossRef] [PubMed]

F. B. Leloup, M. R. Pointer, P. Dutré, and P. Hanselaer, “Geometry of illumination, luminance contrast, and gloss perception,” J. Opt. Soc. Am. A 27, 2046–2054 (2010).
[CrossRef]

2008 (3)

F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47, 5454–5467 (2008).
[CrossRef] [PubMed]

B. Xiao and D. H. Brainard, “Surface gloss and color perception of 3D objects,” Vis. Neurosci. 25, 371–385 (2008).
[CrossRef] [PubMed]

Y.-H. Ho, M. S. Landy, and L. T. Maloney, “Conjoint measurement of gloss and surface texture,” Psychol. Sci. 19, 196–204(2008).
[CrossRef] [PubMed]

2007 (1)

P. Vangorp, J. Laurijssen, and P. Dutré, “The influence of shape on the perception of material reflectance,” ACM Trans. Graph. 26, 77 (2007).
[CrossRef]

2006 (1)

2004 (5)

G. Obein, K. Knoblauch, and F. Viénot, “Difference scaling of gloss: nonlinearity, binocularity, and constancy,” J. Vis. 4 (9), 711–720 (2004).
[CrossRef] [PubMed]

R. W. Fleming, A. Torralba, and E. H. Adelson, “Specular reflection and the perception of shape,” J. Vis. 4 (9), 790–820 (2004).
[CrossRef]

J. F. Norman, J. T. Todd, and G. A. Orban, “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information,” Psychol. Sci. 15, 565–570 (2004).
[CrossRef] [PubMed]

R. O. Dror, A. S. Willsky, and E. H. Adelson, “Statistical characterization of real world illumination,” J. Vis. 4 (9), 821–837(2004).
[CrossRef] [PubMed]

J. T. Todd, J. F. Norman, and E. Mingolla, “Lightness constancy in the presence of specular highlights,” Psychol. Sci. 15, 33–39 (2004).
[CrossRef] [PubMed]

2003 (2)

R. W. Fleming, R. O. Dror, and E. H. Adelson, “Real-world illumination and the perception of surface reflectance properties,” J. Vis. 3 (5), 347–368 (2003).
[CrossRef] [PubMed]

M. Mikula, M. Ceppan, and K. Vasco, “Gloss and goniocolorimetry of printed materials,” Color Res. Appl. 28, 335–342 (2003).
[CrossRef]

2001 (1)

J. A. Ferwerda, F. Pellacini, and D. P. Greenberg, “A psychophysically-based model of surface gloss perception,” Proc. SPIE 4299, 291–301 (2001).
[CrossRef]

1999 (1)

J. Tumblin, J. K. Hodgins, and B. K. Guenter, “Two methods for display of high contrast images,” ACM Trans. Graphics 18, 56–94 (1999).
[CrossRef]

1997 (1)

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291–306 (1997).
[CrossRef]

1991 (1)

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

1988 (1)

G. A. Gescheider, “Psychophysical scaling,” Ann. Rev. Psychol. 39, 169–200 (1988).
[CrossRef]

1987 (1)

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

1981 (1)

J. Beck and K. Prazdny, “Highlights and the perception of glossiness,” Percept. Psychophys. 30, 407–410 (1981).
[CrossRef] [PubMed]

1968 (1)

E. C. Poulton, “The new psychophysics: six models for magnitude estimation,” Psychol. Bull. 69 (1), 1–19 (1968).
[CrossRef]

1964 (1)

D. Jameson and L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

1956 (1)

S. S. Stevens, “The direct estimation of sensory magnitudes—loudness,” Am. J. Psychol. 69 (1), 1–25 (1956).
[CrossRef] [PubMed]

1937 (1)

R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18, 19–39 (1937).

Adelson, E. H.

R. W. Fleming, A. Torralba, and E. H. Adelson, “Specular reflection and the perception of shape,” J. Vis. 4 (9), 790–820 (2004).
[CrossRef]

R. O. Dror, A. S. Willsky, and E. H. Adelson, “Statistical characterization of real world illumination,” J. Vis. 4 (9), 821–837(2004).
[CrossRef] [PubMed]

R. W. Fleming, R. O. Dror, and E. H. Adelson, “Real-world illumination and the perception of surface reflectance properties,” J. Vis. 3 (5), 347–368 (2003).
[CrossRef] [PubMed]

Beck, J.

J. Beck and K. Prazdny, “Highlights and the perception of glossiness,” Percept. Psychophys. 30, 407–410 (1981).
[CrossRef] [PubMed]

Billmeyer, F. W.

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

Bodmann, H. W.

H. W. Bodmann, P. Haubner, and A. M. Marsden, “A unified relationship between brightness and luminance,” in CIE Proceedings, Kyoto Session 1979 (CIE, 1980), pp. 99–102.

Boyaci, H.

K. Doerschner, H. Boyaci, and L. T. Maloney, “Estimating the glossiness transfer function induced by illumination change and testing its transitivity,” J. Vis. 10 (4), 8 (2010).
[CrossRef] [PubMed]

K. Doerschner, L. T. Maloney, and H. Boyaci, “Perceived glossiness in high dynamic range scenes,” J. Vis. 10 (9), 11 (2010).
[CrossRef] [PubMed]

Brainard, D. H.

M. Olkkonen and D. H. Brainard, “Perceived glossiness and lightness under real-world illumination,” J. Vis. 10 (9), 5 (2010).
[CrossRef] [PubMed]

B. Xiao and D. H. Brainard, “Surface gloss and color perception of 3D objects,” Vis. Neurosci. 25, 371–385 (2008).
[CrossRef] [PubMed]

Ceppan, M.

M. Mikula, M. Ceppan, and K. Vasco, “Gloss and goniocolorimetry of printed materials,” Color Res. Appl. 28, 335–342 (2003).
[CrossRef]

Clarke, A. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

Dakin, J.

Doerschner, K.

K. Doerschner, H. Boyaci, and L. T. Maloney, “Estimating the glossiness transfer function induced by illumination change and testing its transitivity,” J. Vis. 10 (4), 8 (2010).
[CrossRef] [PubMed]

K. Doerschner, L. T. Maloney, and H. Boyaci, “Perceived glossiness in high dynamic range scenes,” J. Vis. 10 (9), 11 (2010).
[CrossRef] [PubMed]

Dror, R. O.

R. O. Dror, A. S. Willsky, and E. H. Adelson, “Statistical characterization of real world illumination,” J. Vis. 4 (9), 821–837(2004).
[CrossRef] [PubMed]

R. W. Fleming, R. O. Dror, and E. H. Adelson, “Real-world illumination and the perception of surface reflectance properties,” J. Vis. 3 (5), 347–368 (2003).
[CrossRef] [PubMed]

Dutré, P.

Ekroll, V.

G. Wendt, F. Faul, V. Ekroll, and R. Mausfeld, “Disparity, motion, and color information improve gloss constancy performance,” J. Vis. 10 (9), 7 (2010).
[CrossRef] [PubMed]

Faul, F.

G. Wendt, F. Faul, V. Ekroll, and R. Mausfeld, “Disparity, motion, and color information improve gloss constancy performance,” J. Vis. 10 (9), 7 (2010).
[CrossRef] [PubMed]

Ferwerda, J. A.

J. B. Phillips, J. A. Ferwerda, and A. Nunziata, “Gloss discrimination and eye movement,” Proc. SPIE 7527, 75270Z (2010).
[CrossRef]

J. A. Ferwerda, F. Pellacini, and D. P. Greenberg, “A psychophysically-based model of surface gloss perception,” Proc. SPIE 4299, 291–301 (2001).
[CrossRef]

J. B. Phillips, J. A. Ferwerda, and S. Luka, “Effects of image dynamic range on apparent surface gloss,” in Proceedings of the 17th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2010), pp. 193–197.
[PubMed]

F. Pellacini, J. A. Ferwerda, and D. P. Greenberg, “Toward a psychophysically-based light reflection model for image synthesis,” in Proceedings of SIGGRAPH’00 (Association for Computing Machinery, 2000), pp. 55–64.

Fleming, R. W.

R. W. Fleming, A. Torralba, and E. H. Adelson, “Specular reflection and the perception of shape,” J. Vis. 4 (9), 790–820 (2004).
[CrossRef]

R. W. Fleming, R. O. Dror, and E. H. Adelson, “Real-world illumination and the perception of surface reflectance properties,” J. Vis. 3 (5), 347–368 (2003).
[CrossRef] [PubMed]

Forment, S.

Friedman, J.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).

Gescheider, G. A.

G. A. Gescheider, “Psychophysical scaling,” Ann. Rev. Psychol. 39, 169–200 (1988).
[CrossRef]

Greenberg, D. P.

J. A. Ferwerda, F. Pellacini, and D. P. Greenberg, “A psychophysically-based model of surface gloss perception,” Proc. SPIE 4299, 291–301 (2001).
[CrossRef]

F. Pellacini, J. A. Ferwerda, and D. P. Greenberg, “Toward a psychophysically-based light reflection model for image synthesis,” in Proceedings of SIGGRAPH’00 (Association for Computing Machinery, 2000), pp. 55–64.

Guenter, B. K.

J. Tumblin, J. K. Hodgins, and B. K. Guenter, “Two methods for display of high contrast images,” ACM Trans. Graphics 18, 56–94 (1999).
[CrossRef]

Hanselaer, P.

Hastie, T.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).

Haubner, P.

H. W. Bodmann, P. Haubner, and A. M. Marsden, “A unified relationship between brightness and luminance,” in CIE Proceedings, Kyoto Session 1979 (CIE, 1980), pp. 99–102.

Ho, Y.-H.

Y.-H. Ho, M. S. Landy, and L. T. Maloney, “Conjoint measurement of gloss and surface texture,” Psychol. Sci. 19, 196–204(2008).
[CrossRef] [PubMed]

Hodgins, J. K.

J. Tumblin, J. K. Hodgins, and B. K. Guenter, “Two methods for display of high contrast images,” ACM Trans. Graphics 18, 56–94 (1999).
[CrossRef]

Hunt, R. W. G.

R. W. G. Hunt, Measuring Colour (Fountain, 2001).

Hunter, R. S.

R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18, 19–39 (1937).

Hurvich, L. M.

D. Jameson and L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

L. M. Hurvich, “Color vision deficiencies,” in Handbook of Sensory Physiology, Vol. VII/4: Visual Psychophysics, D.Jameson and L.M.Hurvich, eds. (Springer-Verlag, 1972), pp. 582–624.

Jameson, D.

D. Jameson and L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

Ji, W.

Knoblauch, K.

G. Obein, K. Knoblauch, and F. Viénot, “Difference scaling of gloss: nonlinearity, binocularity, and constancy,” J. Vis. 4 (9), 711–720 (2004).
[CrossRef] [PubMed]

Landy, M. S.

Y.-H. Ho, M. S. Landy, and L. T. Maloney, “Conjoint measurement of gloss and surface texture,” Psychol. Sci. 19, 196–204(2008).
[CrossRef] [PubMed]

Larson, G. W.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291–306 (1997).
[CrossRef]

Laurijssen, J.

P. Vangorp, J. Laurijssen, and P. Dutré, “The influence of shape on the perception of material reflectance,” ACM Trans. Graph. 26, 77 (2007).
[CrossRef]

Leloup, F. B.

Luka, S.

J. B. Phillips, J. A. Ferwerda, and S. Luka, “Effects of image dynamic range on apparent surface gloss,” in Proceedings of the 17th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2010), pp. 193–197.
[PubMed]

Luo, M. R.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

Luo, R. M.

Maloney, L. T.

K. Doerschner, L. T. Maloney, and H. Boyaci, “Perceived glossiness in high dynamic range scenes,” J. Vis. 10 (9), 11 (2010).
[CrossRef] [PubMed]

K. Doerschner, H. Boyaci, and L. T. Maloney, “Estimating the glossiness transfer function induced by illumination change and testing its transitivity,” J. Vis. 10 (4), 8 (2010).
[CrossRef] [PubMed]

Y.-H. Ho, M. S. Landy, and L. T. Maloney, “Conjoint measurement of gloss and surface texture,” Psychol. Sci. 19, 196–204(2008).
[CrossRef] [PubMed]

Marsden, A. M.

H. W. Bodmann, P. Haubner, and A. M. Marsden, “A unified relationship between brightness and luminance,” in CIE Proceedings, Kyoto Session 1979 (CIE, 1980), pp. 99–102.

Mausfeld, R.

G. Wendt, F. Faul, V. Ekroll, and R. Mausfeld, “Disparity, motion, and color information improve gloss constancy performance,” J. Vis. 10 (9), 7 (2010).
[CrossRef] [PubMed]

Mikula, M.

M. Mikula, M. Ceppan, and K. Vasco, “Gloss and goniocolorimetry of printed materials,” Color Res. Appl. 28, 335–342 (2003).
[CrossRef]

Mingolla, E.

J. T. Todd, J. F. Norman, and E. Mingolla, “Lightness constancy in the presence of specular highlights,” Psychol. Sci. 15, 33–39 (2004).
[CrossRef] [PubMed]

Norman, J. F.

J. T. Todd, J. F. Norman, and E. Mingolla, “Lightness constancy in the presence of specular highlights,” Psychol. Sci. 15, 33–39 (2004).
[CrossRef] [PubMed]

J. F. Norman, J. T. Todd, and G. A. Orban, “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information,” Psychol. Sci. 15, 565–570 (2004).
[CrossRef] [PubMed]

Nunziata, A.

J. B. Phillips, J. A. Ferwerda, and A. Nunziata, “Gloss discrimination and eye movement,” Proc. SPIE 7527, 75270Z (2010).
[CrossRef]

O’Donnell, F. X. D.

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

Obein, G.

G. Obein, K. Knoblauch, and F. Viénot, “Difference scaling of gloss: nonlinearity, binocularity, and constancy,” J. Vis. 4 (9), 711–720 (2004).
[CrossRef] [PubMed]

Olkkonen, M.

M. Olkkonen and D. H. Brainard, “Perceived glossiness and lightness under real-world illumination,” J. Vis. 10 (9), 5 (2010).
[CrossRef] [PubMed]

Orban, G. A.

J. F. Norman, J. T. Todd, and G. A. Orban, “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information,” Psychol. Sci. 15, 565–570 (2004).
[CrossRef] [PubMed]

Pellacini, F.

J. A. Ferwerda, F. Pellacini, and D. P. Greenberg, “A psychophysically-based model of surface gloss perception,” Proc. SPIE 4299, 291–301 (2001).
[CrossRef]

F. Pellacini, J. A. Ferwerda, and D. P. Greenberg, “Toward a psychophysically-based light reflection model for image synthesis,” in Proceedings of SIGGRAPH’00 (Association for Computing Machinery, 2000), pp. 55–64.

Phillips, J. B.

J. B. Phillips, J. A. Ferwerda, and A. Nunziata, “Gloss discrimination and eye movement,” Proc. SPIE 7527, 75270Z (2010).
[CrossRef]

J. B. Phillips, J. A. Ferwerda, and S. Luka, “Effects of image dynamic range on apparent surface gloss,” in Proceedings of the 17th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2010), pp. 193–197.
[PubMed]

Piatko, C.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291–306 (1997).
[CrossRef]

Pointer, M. R.

Poulton, E. C.

E. C. Poulton, “The new psychophysics: six models for magnitude estimation,” Psychol. Bull. 69 (1), 1–19 (1968).
[CrossRef]

Prazdny, K.

J. Beck and K. Prazdny, “Highlights and the perception of glossiness,” Percept. Psychophys. 30, 407–410 (1981).
[CrossRef] [PubMed]

Rhodes, P. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

Rushmeier, H.

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291–306 (1997).
[CrossRef]

Schappo, A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

Scrivener, S. A. R.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

Stevens, S. S.

S. S. Stevens, “The direct estimation of sensory magnitudes—loudness,” Am. J. Psychol. 69 (1), 1–25 (1956).
[CrossRef] [PubMed]

Tait, C. J.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

Tibshirani, R.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).

Todd, J. T.

J. T. Todd, J. F. Norman, and E. Mingolla, “Lightness constancy in the presence of specular highlights,” Psychol. Sci. 15, 33–39 (2004).
[CrossRef] [PubMed]

J. F. Norman, J. T. Todd, and G. A. Orban, “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information,” Psychol. Sci. 15, 565–570 (2004).
[CrossRef] [PubMed]

Torgerson, W. S.

W. S. Torgerson, Theory and Methods of Scaling (Wiley, 1958).

Torralba, A.

R. W. Fleming, A. Torralba, and E. H. Adelson, “Specular reflection and the perception of shape,” J. Vis. 4 (9), 790–820 (2004).
[CrossRef]

Tumblin, J.

J. Tumblin, J. K. Hodgins, and B. K. Guenter, “Two methods for display of high contrast images,” ACM Trans. Graphics 18, 56–94 (1999).
[CrossRef]

Vangorp, P.

P. Vangorp, J. Laurijssen, and P. Dutré, “The influence of shape on the perception of material reflectance,” ACM Trans. Graph. 26, 77 (2007).
[CrossRef]

Vasco, K.

M. Mikula, M. Ceppan, and K. Vasco, “Gloss and goniocolorimetry of printed materials,” Color Res. Appl. 28, 335–342 (2003).
[CrossRef]

Viénot, F.

G. Obein, K. Knoblauch, and F. Viénot, “Difference scaling of gloss: nonlinearity, binocularity, and constancy,” J. Vis. 4 (9), 711–720 (2004).
[CrossRef] [PubMed]

Wendt, G.

G. Wendt, F. Faul, V. Ekroll, and R. Mausfeld, “Disparity, motion, and color information improve gloss constancy performance,” J. Vis. 10 (9), 7 (2010).
[CrossRef] [PubMed]

Willsky, A. S.

R. O. Dror, A. S. Willsky, and E. H. Adelson, “Statistical characterization of real world illumination,” J. Vis. 4 (9), 821–837(2004).
[CrossRef] [PubMed]

Xiao, B.

B. Xiao and D. H. Brainard, “Surface gloss and color perception of 3D objects,” Vis. Neurosci. 25, 371–385 (2008).
[CrossRef] [PubMed]

ACM Trans. Graph. (1)

P. Vangorp, J. Laurijssen, and P. Dutré, “The influence of shape on the perception of material reflectance,” ACM Trans. Graph. 26, 77 (2007).
[CrossRef]

ACM Trans. Graphics (1)

J. Tumblin, J. K. Hodgins, and B. K. Guenter, “Two methods for display of high contrast images,” ACM Trans. Graphics 18, 56–94 (1999).
[CrossRef]

Am. J. Psychol. (1)

S. S. Stevens, “The direct estimation of sensory magnitudes—loudness,” Am. J. Psychol. 69 (1), 1–25 (1956).
[CrossRef] [PubMed]

Ann. Rev. Psychol. (1)

G. A. Gescheider, “Psychophysical scaling,” Ann. Rev. Psychol. 39, 169–200 (1988).
[CrossRef]

Appl. Opt. (1)

Col. Res. Appl. (1)

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. part I. Lutchi colour appearance data,” Col. Res. Appl. 16, 166–180 (1991).
[CrossRef]

Color Res. Appl. (2)

M. Mikula, M. Ceppan, and K. Vasco, “Gloss and goniocolorimetry of printed materials,” Color Res. Appl. 28, 335–342 (2003).
[CrossRef]

F. W. Billmeyer and F. X. D. O’Donnell, “Visual gloss scaling and multidimensional scaling analysis of painted specimens,” Color Res. Appl. 12, 315–326 (1987).
[CrossRef]

IEEE Trans. Vis. Comput. Graph. (1)

G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Trans. Vis. Comput. Graph. 3, 291–306 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Res. Natl. Bur. Stand. (1)

R. S. Hunter, “Methods of determining gloss,” National Bureau of Standards Research Paper RP958, J. Res. Natl. Bur. Stand. 18, 19–39 (1937).

J. Vis. (8)

G. Obein, K. Knoblauch, and F. Viénot, “Difference scaling of gloss: nonlinearity, binocularity, and constancy,” J. Vis. 4 (9), 711–720 (2004).
[CrossRef] [PubMed]

R. O. Dror, A. S. Willsky, and E. H. Adelson, “Statistical characterization of real world illumination,” J. Vis. 4 (9), 821–837(2004).
[CrossRef] [PubMed]

R. W. Fleming, R. O. Dror, and E. H. Adelson, “Real-world illumination and the perception of surface reflectance properties,” J. Vis. 3 (5), 347–368 (2003).
[CrossRef] [PubMed]

K. Doerschner, H. Boyaci, and L. T. Maloney, “Estimating the glossiness transfer function induced by illumination change and testing its transitivity,” J. Vis. 10 (4), 8 (2010).
[CrossRef] [PubMed]

M. Olkkonen and D. H. Brainard, “Perceived glossiness and lightness under real-world illumination,” J. Vis. 10 (9), 5 (2010).
[CrossRef] [PubMed]

G. Wendt, F. Faul, V. Ekroll, and R. Mausfeld, “Disparity, motion, and color information improve gloss constancy performance,” J. Vis. 10 (9), 7 (2010).
[CrossRef] [PubMed]

R. W. Fleming, A. Torralba, and E. H. Adelson, “Specular reflection and the perception of shape,” J. Vis. 4 (9), 790–820 (2004).
[CrossRef]

K. Doerschner, L. T. Maloney, and H. Boyaci, “Perceived glossiness in high dynamic range scenes,” J. Vis. 10 (9), 11 (2010).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

J. Beck and K. Prazdny, “Highlights and the perception of glossiness,” Percept. Psychophys. 30, 407–410 (1981).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. B. Phillips, J. A. Ferwerda, and A. Nunziata, “Gloss discrimination and eye movement,” Proc. SPIE 7527, 75270Z (2010).
[CrossRef]

J. A. Ferwerda, F. Pellacini, and D. P. Greenberg, “A psychophysically-based model of surface gloss perception,” Proc. SPIE 4299, 291–301 (2001).
[CrossRef]

Psychol. Bull. (1)

E. C. Poulton, “The new psychophysics: six models for magnitude estimation,” Psychol. Bull. 69 (1), 1–19 (1968).
[CrossRef]

Psychol. Sci. (3)

J. F. Norman, J. T. Todd, and G. A. Orban, “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information,” Psychol. Sci. 15, 565–570 (2004).
[CrossRef] [PubMed]

Y.-H. Ho, M. S. Landy, and L. T. Maloney, “Conjoint measurement of gloss and surface texture,” Psychol. Sci. 19, 196–204(2008).
[CrossRef] [PubMed]

J. T. Todd, J. F. Norman, and E. Mingolla, “Lightness constancy in the presence of specular highlights,” Psychol. Sci. 15, 33–39 (2004).
[CrossRef] [PubMed]

Vis. Neurosci. (1)

B. Xiao and D. H. Brainard, “Surface gloss and color perception of 3D objects,” Vis. Neurosci. 25, 371–385 (2008).
[CrossRef] [PubMed]

Vision Res. (1)

D. Jameson and L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

Other (14)

L. M. Hurvich, “Color vision deficiencies,” in Handbook of Sensory Physiology, Vol. VII/4: Visual Psychophysics, D.Jameson and L.M.Hurvich, eds. (Springer-Verlag, 1972), pp. 582–624.

R. W. G. Hunt, Measuring Colour (Fountain, 2001).

American Society for Testing and Materials, “Standard test method for visual evaluation of gloss differences between surfaces of similar appearance,” Test Method D4449 (ASTM, 2008).

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).

H. W. Bodmann, P. Haubner, and A. M. Marsden, “A unified relationship between brightness and luminance,” in CIE Proceedings, Kyoto Session 1979 (CIE, 1980), pp. 99–102.

Commission Internationale de l’Eclairage, “Contrast and visibility” Technical Report 95:1992 (CIE, 1992).

W. S. Torgerson, Theory and Methods of Scaling (Wiley, 1958).

J. B. Phillips, J. A. Ferwerda, and S. Luka, “Effects of image dynamic range on apparent surface gloss,” in Proceedings of the 17th Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2010), pp. 193–197.
[PubMed]

F. Pellacini, J. A. Ferwerda, and D. P. Greenberg, “Toward a psychophysically-based light reflection model for image synthesis,” in Proceedings of SIGGRAPH’00 (Association for Computing Machinery, 2000), pp. 55–64.

International Lighting Vocabulary CIE Publication 17.4, ISBN: 3900734070 (IEC/CIE, 1987).

American Society for Testing and Materials “Standard test methods for measurement of gloss of high-gloss surfaces by goniophotometry,” Test Method E430-05 (ASTM, 2005).

American Society for Testing and Materials, “Standard test methods for instrumental measurement of distinctness-of-image gloss of coating surfaces,” Test Method D5767 (ASTM, 2004).

American Society for Testing and Materials, “Standard test method for specular gloss,” Test Method D523 (ASTM, 2008).

International Organization for Standardization, “Paints and varnishes—determination of specular gloss of non-metallic paint films at 20 degrees, 60 degrees and 85 degrees,” Standard 2813 (ISO, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Side view of the test booth with the specular and background light sources.

Fig. 2
Fig. 2

BRDF functions at an angle of incidence of 60 ° and at wavelength 589.3 nm . The viewing angle ranges from 35 ° to 85 ° . Solid curves represent the results of the three test samples, while the dashed curve represents the results of the black glass gloss reference sample.

Fig. 3
Fig. 3

Pictures of the gray sample under four illumination settings. The image of the specular light source can be clearly discerned.

Fig. 4
Fig. 4

Graphic representation of the stimuli in an L b versus L im graph. All data points lie above the straight line on which L im and L b are equal (zero contrast). Additional dashed lines of constant psychometric contrast C are also represented.

Fig. 5
Fig. 5

20 sets of normalized observer data S s , o , norm , scaled to the maximum geometric mean value, and plotted against the geometric mean data S ^ s .

Fig. 6
Fig. 6

VG predictions as defined in Eq. (6), plotted against the corresponding geometric mean data S ^ s .

Fig. 7
Fig. 7

VG predictions as defined in Eq. (7), plotted against the corresponding geometric mean data S ^ s . The specific test conditions for which the specular light source is turned off are indicated by the red ellipse.

Fig. 8
Fig. 8

20 sets of normalized observer data S s , o , norm , scaled to the maximum geometric mean value, and plotted against the calculated geometric mean data S ^ s of the validation experiment.

Tables (6)

Tables Icon

Table 1 CIELAB Values ( L * a * b * ) and Average Specular Gloss Values of the Three Samples a

Tables Icon

Table 2 Values of Both the Scaling Factor a o and the Line Intercept b o for All Sets of Observer Data

Tables Icon

Table 3 Evaluation of Both the Observer Agreement and Repeatability by Calculation of the Coefficient of Variation CV a

Tables Icon

Table 4 Overview of Hypothetic Functions Describing the Relationship between the Geometric Mean Data S ^ s and Both the Luminance L im and L b a

Tables Icon

Table 5 Values of Both the Scaling Factor a o and the Line Intercept b o , for the 20 Sets of Observer Data of the Validation Experiment

Tables Icon

Table 6 Evaluation of the Observer Agreement and Repeatability in the Validation Experiment by Calculation of the Average Value of the Coefficient of Variation CV

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

L im = ρ s L s p + L b ,
C = | L im L b | L b ,
log S ^ s = a o log S s , o + b o .
S s , o , norm = 10 ( log S ^ s b o ) / a o .
CV = 100 y ¯ s = 1 n ( x s y s ) 2 n .
VG = 15 ( L im L b ) 0.4 .
VG = 22 L im 0.379 17 L b 0.354 .
B = a L p B 0 .
CG = ( ρ s + ρ d 2 ) 1 / 3 ( ρ d 2 ) 1 / 3 .
VG = 28 L im 1 / 3 21 L b 1 / 3 .
VG = 28 ( ρ s L s p + L b ) 1 / 3 21 L b 1 / 3 .
L b = ρ d π E .
L b = ρ d π ( α L s p ) ,
VG = 28 L s p 1 / 3 [ ( ρ s + c 1 ρ d ) 1 / 3 c 2 ρ d 1 / 3 ] ,
MAE = 1 n s = 1 n | VG S s | ,

Metrics