Abstract

The Airy beam (AiB) has attracted a lot of attention recently because of its intriguing features; the most distinctive ones are the propagation along curved trajectories in free space and the weak diffraction. We have previously shown that the AiB is, in fact, a caustic of the rays that radiate from the tail of the Airy function aperture distribution. Here we derive a class of ultra wideband Airy pulsed beams (AiPBs), which are the extension of the AiB into the time domain. We introduce a frequency scaling of the initial aperture field that renders the ray skeleton of the field, including the caustic, frequency independent, thus ensuring that all the frequency components propagate along the same curved trajectory and that the AiPB does not disperse. The resulting AiPB preserves the intriguing features of the time-harmonic AiB discussed above. An exact closed-form solution for the AiPB is derived using the spectral theory of transients. We also derive wavefront approximations for the field in the time window around the pulse arrival, which are valid uniformly in the vicinity of the caustic. These approximations are based on the so-called uniform geometrical optics, which is extended here to the time domain.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription