Abstract

This work presents a hybrid finite-element-boundary integral algorithm to solve the problem of scattering from a finite and infinite array of two-dimensional cavities engraved in a perfectly electric conducting screen covered with a stratified dielectric layer. The solution region is divided into interior regions containing the cavities and the region exterior to the cavities. The finite-element formulation is applied only inside the interior regions to derive a linear system of equations associated with unknown field values. Using a two-boundary formulation, the surface integral equation employing the grounded dielectric slab Green’s function in the spatial domain is applied at the opening of the cavities as a boundary constraint to truncate the solution region. Placing the truncation boundary at the opening of the cavities and inside the dielectric layer results in a highly efficient solution in terms of computational resources, which makes the algorithm well suited for the optimization problems involving scattering from grating surfaces. The near fields are generated for an array of cavities with different dimensions and inhomogeneous fillings covered with dielectric layers.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription