Abstract

The standardized residual sum of squares index was proposed to examine the significant merit of a given color-difference formula over another with respect to a given set of visual color-difference data [J. Opt. Soc. Am. A 24, 1823–1829, 2007]. This index can also be employed to determine intra- and inter-observer variability, although the full complexity of this variability cannot be described by just one number. Appropriate utilization of the standardized residual sum of squares index for the assessment of observer variability is described with a view to encourage its use in future color-difference research. The main goal of this paper is to demonstrate that setting the F parameters of the standardized residual sum of squares index to 1 results in a loss of essential properties of the index (for example, symmetry), and is therefore strongly discouraged.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
    [CrossRef]
  2. CIE, “Parametric effects in colour difference evaluation,” CIE Tech. Rep. 101 (CIE Central Bureau, 1993).
  3. R. G. Kuehni, “Variability in estimation of suprathreshold small color differences,” Color Res. Appl. 34, 367–374 (2009).
    [CrossRef]
  4. R. Shamey, L. M. Cárdenas, D. Hinks, and R. Woodard, “Comparison of naive and expert subjects in the assessment of small color differences,” J. Opt. Soc. Am. A 27, 1482–1489 (2010).
    [CrossRef]
  5. S. G. Lee, R. Shamey, D. Hinks, and W. Jasper, “Development of a comprehensive visual dataset based on a CIE blue color center: assessment of color difference formulae using various statistical methods,” Color Res. Appl. 36, 27–41 (2011).
    [CrossRef]
  6. R. G. Kuehni, “CIEDE2000, milestone or final answer?” Color Res. Appl. 27, 126–127 (2002).
    [CrossRef]
  7. M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834(2008).
    [CrossRef]
  8. S. Z. Shen and R. S. Berns, “Evaluating color difference equation performance incorporating visual uncertainty,” Color Res. Appl. 34, 375–390 (2009).
    [CrossRef]
  9. J. Ma, H. S. Xu, M. R. Luo, and G. H. Cui, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 7, 869–872 (2009).
    [CrossRef]
  10. R. S. Berns and B. X. Hou, “RIT-DuPont supra-threshold color-tolerance individual color-difference pair dataset,” Color Res. Appl. 35, 274–283 (2010).
    [CrossRef]
  11. S. G. Kandi and M. A. Tehrani, “Investigating the effect of texture on the performance of color difference formulae,” Color Res. Appl. 35, 94–100 (2010).
  12. Z. N. Huang, H. S. Xu, M. R. Luo, G. H. Cui, and H. J. Feng, “Assessing total differences for effective samples having variations in color, coarseness, and glint,” Chin. Opt. Lett. 8, 717–720(2010).
    [CrossRef]
  13. M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.
  14. J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 29, 1–27 (1964).
    [CrossRef]
  15. A. P. M. Coxon, The User’s Guide to Multidimensional Scaling (Heinemann, 1982).
  16. International Organization for Standardization, “Tests for colour fastness–Part A02: gray scale for assessing change in colour,” ISO 105-A02 (International Organization for Standardization, 1993), http://www.iso.org.
  17. AATCC Committee RA36, AATCC Evaluation Procedure 1, “Gray scale for color change” (AATCC, 2007), http://www.aatcc.org.
  18. Fastness Tests Co-ordinating Committee (F.T.C.C.) Publication XI, “The development of the geometric grey scales for fastness assessment,” J. Soc. Dyers Colourists 69, 404–409 (1953).
  19. S. S. Guan and M. R. Luo, “Investigation of parametric effects using small colour differences,” Color Res. Appl. 24, 331–343(1999).
    [CrossRef]
  20. L. M. Cárdenas, R. Shamey, and D. Hinks, “Development of a novel linear gray scale for visual assessment of small color differences,” AATCC Review 9 (8), 42–47 (2009).
  21. CIE, “Improvement to industrial colour-difference evaluation,” CIE Tech. Rep. 142-2001 (CIE Central Bureau, 2001).
  22. R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).
  23. S. Morillas, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula,” J. Mod. Opt. 56, 1447–1456 (2009).
    [CrossRef]

2011 (1)

S. G. Lee, R. Shamey, D. Hinks, and W. Jasper, “Development of a comprehensive visual dataset based on a CIE blue color center: assessment of color difference formulae using various statistical methods,” Color Res. Appl. 36, 27–41 (2011).
[CrossRef]

2010 (5)

R. Shamey, L. M. Cárdenas, D. Hinks, and R. Woodard, “Comparison of naive and expert subjects in the assessment of small color differences,” J. Opt. Soc. Am. A 27, 1482–1489 (2010).
[CrossRef]

R. S. Berns and B. X. Hou, “RIT-DuPont supra-threshold color-tolerance individual color-difference pair dataset,” Color Res. Appl. 35, 274–283 (2010).
[CrossRef]

S. G. Kandi and M. A. Tehrani, “Investigating the effect of texture on the performance of color difference formulae,” Color Res. Appl. 35, 94–100 (2010).

Z. N. Huang, H. S. Xu, M. R. Luo, G. H. Cui, and H. J. Feng, “Assessing total differences for effective samples having variations in color, coarseness, and glint,” Chin. Opt. Lett. 8, 717–720(2010).
[CrossRef]

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

2009 (5)

R. G. Kuehni, “Variability in estimation of suprathreshold small color differences,” Color Res. Appl. 34, 367–374 (2009).
[CrossRef]

S. Z. Shen and R. S. Berns, “Evaluating color difference equation performance incorporating visual uncertainty,” Color Res. Appl. 34, 375–390 (2009).
[CrossRef]

J. Ma, H. S. Xu, M. R. Luo, and G. H. Cui, “Color appearance and visual measurements for color samples with gloss effect,” Chin. Opt. Lett. 7, 869–872 (2009).
[CrossRef]

L. M. Cárdenas, R. Shamey, and D. Hinks, “Development of a novel linear gray scale for visual assessment of small color differences,” AATCC Review 9 (8), 42–47 (2009).

S. Morillas, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula,” J. Mod. Opt. 56, 1447–1456 (2009).
[CrossRef]

2008 (2)

R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).

M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834(2008).
[CrossRef]

2007 (2)

2002 (1)

R. G. Kuehni, “CIEDE2000, milestone or final answer?” Color Res. Appl. 27, 126–127 (2002).
[CrossRef]

2001 (1)

CIE, “Improvement to industrial colour-difference evaluation,” CIE Tech. Rep. 142-2001 (CIE Central Bureau, 2001).

1999 (1)

S. S. Guan and M. R. Luo, “Investigation of parametric effects using small colour differences,” Color Res. Appl. 24, 331–343(1999).
[CrossRef]

1993 (2)

International Organization for Standardization, “Tests for colour fastness–Part A02: gray scale for assessing change in colour,” ISO 105-A02 (International Organization for Standardization, 1993), http://www.iso.org.

CIE, “Parametric effects in colour difference evaluation,” CIE Tech. Rep. 101 (CIE Central Bureau, 1993).

1982 (1)

A. P. M. Coxon, The User’s Guide to Multidimensional Scaling (Heinemann, 1982).

1964 (1)

J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 29, 1–27 (1964).
[CrossRef]

1953 (1)

Fastness Tests Co-ordinating Committee (F.T.C.C.) Publication XI, “The development of the geometric grey scales for fastness assessment,” J. Soc. Dyers Colourists 69, 404–409 (1953).

Berns, R. S.

R. S. Berns and B. X. Hou, “RIT-DuPont supra-threshold color-tolerance individual color-difference pair dataset,” Color Res. Appl. 35, 274–283 (2010).
[CrossRef]

S. Z. Shen and R. S. Berns, “Evaluating color difference equation performance incorporating visual uncertainty,” Color Res. Appl. 34, 375–390 (2009).
[CrossRef]

M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834(2008).
[CrossRef]

Bracko, S.

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

Cárdenas, L. M.

R. Shamey, L. M. Cárdenas, D. Hinks, and R. Woodard, “Comparison of naive and expert subjects in the assessment of small color differences,” J. Opt. Soc. Am. A 27, 1482–1489 (2010).
[CrossRef]

L. M. Cárdenas, R. Shamey, and D. Hinks, “Development of a novel linear gray scale for visual assessment of small color differences,” AATCC Review 9 (8), 42–47 (2009).

CIE,

CIE, “Improvement to industrial colour-difference evaluation,” CIE Tech. Rep. 142-2001 (CIE Central Bureau, 2001).

CIE, “Parametric effects in colour difference evaluation,” CIE Tech. Rep. 101 (CIE Central Bureau, 1993).

Coxon, A. P. M.

A. P. M. Coxon, The User’s Guide to Multidimensional Scaling (Heinemann, 1982).

Cui, G.

Cui, G. H.

Feng, H. J.

García, P. A.

Gómez-Robledo, L.

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

S. Morillas, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula,” J. Mod. Opt. 56, 1447–1456 (2009).
[CrossRef]

R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).

Grosman, M.

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

Guan, S. S.

S. S. Guan and M. R. Luo, “Investigation of parametric effects using small colour differences,” Color Res. Appl. 24, 331–343(1999).
[CrossRef]

Hinks, D.

S. G. Lee, R. Shamey, D. Hinks, and W. Jasper, “Development of a comprehensive visual dataset based on a CIE blue color center: assessment of color difference formulae using various statistical methods,” Color Res. Appl. 36, 27–41 (2011).
[CrossRef]

R. Shamey, L. M. Cárdenas, D. Hinks, and R. Woodard, “Comparison of naive and expert subjects in the assessment of small color differences,” J. Opt. Soc. Am. A 27, 1482–1489 (2010).
[CrossRef]

L. M. Cárdenas, R. Shamey, and D. Hinks, “Development of a novel linear gray scale for visual assessment of small color differences,” AATCC Review 9 (8), 42–47 (2009).

Hou, B. X.

R. S. Berns and B. X. Hou, “RIT-DuPont supra-threshold color-tolerance individual color-difference pair dataset,” Color Res. Appl. 35, 274–283 (2010).
[CrossRef]

Huang, Z. N.

Huertas, R.

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

S. Morillas, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula,” J. Mod. Opt. 56, 1447–1456 (2009).
[CrossRef]

R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).

M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834(2008).
[CrossRef]

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
[CrossRef]

Jasper, W.

S. G. Lee, R. Shamey, D. Hinks, and W. Jasper, “Development of a comprehensive visual dataset based on a CIE blue color center: assessment of color difference formulae using various statistical methods,” Color Res. Appl. 36, 27–41 (2011).
[CrossRef]

Kandi, S. G.

S. G. Kandi and M. A. Tehrani, “Investigating the effect of texture on the performance of color difference formulae,” Color Res. Appl. 35, 94–100 (2010).

Kruskal, J. B.

J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 29, 1–27 (1964).
[CrossRef]

Kuehni, R. G.

R. G. Kuehni, “Variability in estimation of suprathreshold small color differences,” Color Res. Appl. 34, 367–374 (2009).
[CrossRef]

R. G. Kuehni, “CIEDE2000, milestone or final answer?” Color Res. Appl. 27, 126–127 (2002).
[CrossRef]

Lee, S. G.

S. G. Lee, R. Shamey, D. Hinks, and W. Jasper, “Development of a comprehensive visual dataset based on a CIE blue color center: assessment of color difference formulae using various statistical methods,” Color Res. Appl. 36, 27–41 (2011).
[CrossRef]

López-Álvarez, M. A.

R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).

Luo, M. R.

Ma, J.

Melgosa, M.

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

S. Morillas, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula,” J. Mod. Opt. 56, 1447–1456 (2009).
[CrossRef]

R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).

M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834(2008).
[CrossRef]

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24, 1823–1829 (2007).
[CrossRef]

Morillas, S.

S. Morillas, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula,” J. Mod. Opt. 56, 1447–1456 (2009).
[CrossRef]

Muñoz-Ibáñez, E.

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

RA36, AATCC Committee

AATCC Committee RA36, AATCC Evaluation Procedure 1, “Gray scale for color change” (AATCC, 2007), http://www.aatcc.org.

Roa, R.

R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).

Shamey, R.

S. G. Lee, R. Shamey, D. Hinks, and W. Jasper, “Development of a comprehensive visual dataset based on a CIE blue color center: assessment of color difference formulae using various statistical methods,” Color Res. Appl. 36, 27–41 (2011).
[CrossRef]

R. Shamey, L. M. Cárdenas, D. Hinks, and R. Woodard, “Comparison of naive and expert subjects in the assessment of small color differences,” J. Opt. Soc. Am. A 27, 1482–1489 (2010).
[CrossRef]

L. M. Cárdenas, R. Shamey, and D. Hinks, “Development of a novel linear gray scale for visual assessment of small color differences,” AATCC Review 9 (8), 42–47 (2009).

Shen, S. Z.

S. Z. Shen and R. S. Berns, “Evaluating color difference equation performance incorporating visual uncertainty,” Color Res. Appl. 34, 375–390 (2009).
[CrossRef]

Standardization, International Organization for

International Organization for Standardization, “Tests for colour fastness–Part A02: gray scale for assessing change in colour,” ISO 105-A02 (International Organization for Standardization, 1993), http://www.iso.org.

Tehrani, M. A.

S. G. Kandi and M. A. Tehrani, “Investigating the effect of texture on the performance of color difference formulae,” Color Res. Appl. 35, 94–100 (2010).

Woodard, R.

XI, F.T.C.C. Publication

Fastness Tests Co-ordinating Committee (F.T.C.C.) Publication XI, “The development of the geometric grey scales for fastness assessment,” J. Soc. Dyers Colourists 69, 404–409 (1953).

Xu, H. S.

AATCC Review (1)

L. M. Cárdenas, R. Shamey, and D. Hinks, “Development of a novel linear gray scale for visual assessment of small color differences,” AATCC Review 9 (8), 42–47 (2009).

Chin. Opt. Lett. (2)

Color Res. Appl. (7)

S. Z. Shen and R. S. Berns, “Evaluating color difference equation performance incorporating visual uncertainty,” Color Res. Appl. 34, 375–390 (2009).
[CrossRef]

R. S. Berns and B. X. Hou, “RIT-DuPont supra-threshold color-tolerance individual color-difference pair dataset,” Color Res. Appl. 35, 274–283 (2010).
[CrossRef]

S. G. Kandi and M. A. Tehrani, “Investigating the effect of texture on the performance of color difference formulae,” Color Res. Appl. 35, 94–100 (2010).

S. G. Lee, R. Shamey, D. Hinks, and W. Jasper, “Development of a comprehensive visual dataset based on a CIE blue color center: assessment of color difference formulae using various statistical methods,” Color Res. Appl. 36, 27–41 (2011).
[CrossRef]

R. G. Kuehni, “CIEDE2000, milestone or final answer?” Color Res. Appl. 27, 126–127 (2002).
[CrossRef]

R. G. Kuehni, “Variability in estimation of suprathreshold small color differences,” Color Res. Appl. 34, 367–374 (2009).
[CrossRef]

S. S. Guan and M. R. Luo, “Investigation of parametric effects using small colour differences,” Color Res. Appl. 24, 331–343(1999).
[CrossRef]

J. Mod. Opt. (1)

S. Morillas, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour-difference formula,” J. Mod. Opt. 56, 1447–1456 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Soc. Dyers Colourists (1)

Fastness Tests Co-ordinating Committee (F.T.C.C.) Publication XI, “The development of the geometric grey scales for fastness assessment,” J. Soc. Dyers Colourists 69, 404–409 (1953).

Opt. Pura Apl. (1)

R. Roa, R. Huertas, M. A. López-Álvarez, L. Gómez-Robledo, and M. Melgosa, “A comparison between illuminants and light-source simulators,” Opt. Pura Apl. 41, 291–300 (2008).

Psychometrika (1)

J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika 29, 1–27 (1964).
[CrossRef]

Other (6)

A. P. M. Coxon, The User’s Guide to Multidimensional Scaling (Heinemann, 1982).

International Organization for Standardization, “Tests for colour fastness–Part A02: gray scale for assessing change in colour,” ISO 105-A02 (International Organization for Standardization, 1993), http://www.iso.org.

AATCC Committee RA36, AATCC Evaluation Procedure 1, “Gray scale for color change” (AATCC, 2007), http://www.aatcc.org.

M. Grosman, S. Bračko, E. Muñoz-Ibáñez, L. Gómez-Robledo, R. Huertas, and M. Melgosa, “Una verificación empírica de la mejora de la fórmula de diferencia de color CIEDE2000 respecto a CIELAB,” in Proc. IX Congreso Nacional del Color, pp. 78–81 (Universidad de Alicante, 2010), ISBN 978-84-9717-144-1.

CIE, “Parametric effects in colour difference evaluation,” CIE Tech. Rep. 101 (CIE Central Bureau, 1993).

CIE, “Improvement to industrial colour-difference evaluation,” CIE Tech. Rep. 142-2001 (CIE Central Bureau, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Plot of visual differences of 10 color pairs for Observers 3 and 14, against average visual results of all observers participating in the experiment described in [13].

Tables (2)

Tables Icon

Table 1 F 1 and F 3 Values for Intra- and Inter-Observer Variability in Experiment Described in [13]; p Values Indicate Result of Testing Hypotheses F 1 = 1 and F 3 = 1

Tables Icon

Table 2 Inter-Observer Variability for Each Observer in Experiment Described in [13]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

STRESS = 100 ( ( Δ E i F 1 Δ V i ) 2 F 1 2 Δ V i 2 ) 1 / 2 with F 1 = Δ E i 2 Δ E i Δ V i .
STRESS = 100 ( ( F 2 Δ E i Δ V i ) 2 Δ V i 2 ) 1 / 2 with F 2 = Δ E i Δ V i Δ E i 2 = 1 F 1 ,
STRESS = 100 ( ( Δ E i F 3 Δ V i ) 2 Δ E i 2 ) 1 / 2 with F 3 = Δ E i Δ V i Δ V i 2 ,
A = Δ E i 2 ; B = Δ E i Δ V i ; C = Δ V i 2 .
STRESS 2 = 10 4 ( ( Δ E i F 1 Δ V i ) 2 F 1 2 Δ V i 2 ) = 10 4 ( 1 + A 2 F 1 B F 1 2 C ) .
STRESS 2 F 1 = 0 10 4 2 B F 1 2 C 2 F 1 C ( A 2 F 1 B ) F 1 4 C 2 = 0 F 1 = A B .
2 STRESS 2 F 1 2 ( A B ) = 2 B 2 C A > 0.

Metrics