Abstract

We propose an all-fiber-optic supermode selection scheme based on large-mode-area single-mode fiber for multicore fiber (MCF). The supermode selection in terms of the coupling coefficient is investigated and compared for various ring-type and concentric-type MCFs. The in-phase supermode is found to have a significantly higher coupling coefficient than other supermodes—demonstrating significant and desirable supermode selection characteristics. This scheme has shown better in-phase supermode selection performance than the conventional free-space Talbot cavity. It is found to be effective in selecting the in-phase supermode for both ring-type and concentric-type MCFs and promising for all-fiber MCF lasers with high power output and good beam quality.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
    [CrossRef] [PubMed]
  2. V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
    [CrossRef]
  3. P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
    [CrossRef]
  4. E. J. Bochove, P. K. Cheo, and G. G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28, 1200–1202 (2003).
    [CrossRef] [PubMed]
  5. Y. Huo, P. K. Cheo, and G. G. King, “Fundamental mode operation of a 19-core phase locked Yb-doped fiber amplifier,” Opt. Express 12, 6230–6239 (2004).
    [CrossRef] [PubMed]
  6. L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009).
    [CrossRef]
  7. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase-locked multicore all-fiber lasers: modeling and experimental investigation,” J. Opt. Soc. Am. B 24, 1721–1728 (2007).
    [CrossRef]
  8. L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott, and D. Jones, “High-power Yb-doped multicore ribbon fiber laser,” Opt. Lett. 30, 2906–2908 (2005).
    [CrossRef] [PubMed]
  9. Y. Huo and P. K. Cheo, “Analysis of transverse mode competition and selection in multicore fiber lasers,” J. Opt. Soc. Am. B 22, 2345–2349 (2005).
    [CrossRef]
  10. A. Mafi and J. V. Moloney, “Phase locking in a passive multicore photonic crystal fiber,” J. Opt. Soc. Am. B 21, 897–902(2004).
    [CrossRef]
  11. A. Mafi and J. V. Moloney, “Shaping modes in multicore photonic crystal fibers,” IEEE Photon. Technol. Lett. 17, 348–350(2005).
    [CrossRef]
  12. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett. 25, 1436–1438(2000).
    [CrossRef]
  13. L. Li, A. Schülzgen, S. Chen, and V. L. Temyanko, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett. 31, 2577–2579 (2006).
    [CrossRef] [PubMed]
  14. C. Wang, F. Zhang, and S. Jian, “Microstructured optical fiber for in-phase mode selection in multicore fiber lasers,” Opt. Express 16, 5505–5515 (2008).
    [CrossRef]
  15. M. Wrage, P. Glas, and M. Leitner, “Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,” Opt. Lett. 26, 980–982 (2001).
    [CrossRef]
  16. E. J. Bochovel and C. J. Corcoran, “In-phase supermode selection in a multicore fiber laser array by means of a self-Fourier external cavity,” Appl. Opt. 46, 5009–5018 (2007).
    [CrossRef]
  17. S. Wielandy, “Implications of high-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007).
    [CrossRef] [PubMed]
  18. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651–13656(2008).
    [CrossRef] [PubMed]
  19. L. Fu, H. A. McKay, and L. Dong, “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express 17, 11782–11793 (2009).
    [CrossRef] [PubMed]

2009 (2)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009).
[CrossRef]

L. Fu, H. A. McKay, and L. Dong, “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express 17, 11782–11793 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (3)

2006 (1)

2005 (4)

L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott, and D. Jones, “High-power Yb-doped multicore ribbon fiber laser,” Opt. Lett. 30, 2906–2908 (2005).
[CrossRef] [PubMed]

Y. Huo and P. K. Cheo, “Analysis of transverse mode competition and selection in multicore fiber lasers,” J. Opt. Soc. Am. B 22, 2345–2349 (2005).
[CrossRef]

A. Mafi and J. V. Moloney, “Shaping modes in multicore photonic crystal fibers,” IEEE Photon. Technol. Lett. 17, 348–350(2005).
[CrossRef]

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

2004 (3)

2003 (1)

2001 (2)

M. Wrage, P. Glas, and M. Leitner, “Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,” Opt. Lett. 26, 980–982 (2001).
[CrossRef]

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[CrossRef]

2000 (1)

Abramov, A.

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

Bennett, C. R.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009).
[CrossRef]

Bochove, E. J.

Bochovel, E. J.

Camerlingo, A.

Chen, S.

Cheo, P. K.

Clarkson, W. A.

Cooper, L. J.

Corcoran, C. J.

Dasgupta, S.

Dong, L.

Feng, X.

Ferin, M.

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

Fischer, D.

Flanagan, J. C.

Fomin, O.

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

Frampton, K. E.

Fu, L.

Gapontsev, V.

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

Glas, P.

Horak, P.

Huo, Y.

Jeong, Y.

Jian, S.

Jones, D.

King, G. G.

Leitner, M.

Li, H.

Li, L.

Liu, A.

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[CrossRef]

Loh, W. H.

Mafi, A.

A. Mafi and J. V. Moloney, “Shaping modes in multicore photonic crystal fibers,” IEEE Photon. Technol. Lett. 17, 348–350(2005).
[CrossRef]

A. Mafi and J. V. Moloney, “Phase locking in a passive multicore photonic crystal fiber,” J. Opt. Soc. Am. B 21, 897–902(2004).
[CrossRef]

Mashkin, V.

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

McKay, H. A.

Michaille, L.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009).
[CrossRef]

Moloney, J. V.

Napartovich, A. P.

Nilsson, J.

Payne, D. N.

Petropoulos, P.

Peyghambarian, N.

Platonov, D.

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

Price, J. H. V.

Richardson, D. J.

Rutt, H. N.

Sahu, J. K.

Schülzgen, A.

Scott, A. M.

Shepherd, T. J.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009).
[CrossRef]

Shkurikhin, N.

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

Taylor, D. M.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009).
[CrossRef]

Temyanko, V. L.

Vysotsky, D. V.

Wang, C.

Wang, P.

White, N. M.

Wielandy, S.

Williams, R. B.

Wrage, M.

Zhang, F.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[CrossRef]

A. Mafi and J. V. Moloney, “Shaping modes in multicore photonic crystal fibers,” IEEE Photon. Technol. Lett. 17, 348–350(2005).
[CrossRef]

IEEE Select. Top. Quantum. Electron. (1)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (6)

Opt. Lett. (5)

Other (1)

V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1

Cross sections for (a) three-core fiber, (b) four-core fiber, (c) six-core fiber, and (d) seven-core fiber.

Fig. 2
Fig. 2

(a) Mode selection with LMA SMF. (b) Mode selection with free-space Talbot cavity.

Fig. 3
Fig. 3

Near fields (a)–(c) and far fields (d)–(f) of supermodes in MCF3 with a = 5 μm and d = 17 μm .

Fig. 4
Fig. 4

Coupling coefficient η S 1 ( a s , z ) for MCF3, a = 5 μm , d = 17 μm by means of SMF.

Fig. 5
Fig. 5

Maximum coupling coefficient η S 1 for first (in-phase) mode in MCF3 and corresponding optimal core radii for a different cavity length z.

Fig. 6
Fig. 6

Coupling coefficients for in-phase supermode (first mode) and the other two supermodes (second and third modes) in MCF3 with mode selected by the Talbot cavity.

Fig. 7
Fig. 7

Comparison of the coupling coefficient differences in two mode selection schemes for MCF3.

Fig. 8
Fig. 8

Near fields (a)–(d) and far fields (e)–(h) of the six supermodes of the MCF6 with a = 5 μm and d = 17 μm .

Fig. 9
Fig. 9

Coupling coefficient η S 1 ( a s , z ) for the MCF6 by means of SMF.

Fig. 10
Fig. 10

The maximum η S 1 for in-phase supermode in MCF6 and the corresponding optimal SMF core radius.

Fig. 11
Fig. 11

Reflected coupling coefficients of all the supermodes in MCF6 using the Talbot cavity.

Fig. 12
Fig. 12

Comparison of the coupling coefficient differences in two mode selection schemes for MCF6.

Fig. 13
Fig. 13

Near fields (a)–(c) and far fields (d)–(f) of supermodes of the MCF4 with a = 5 μm and d = 17 μm .

Fig. 14
Fig. 14

Coupling coefficient η S 1 ( a s , z ) of the in-phase supermode in MCF4 in the SMF scheme.

Fig. 15
Fig. 15

The maximum η S 1 of in-phase supermode and corresponding optimal SMF core radius versus the cavity length.

Fig. 16
Fig. 16

Coupling coefficient η S 4 ( a s , z ) of the fourth supermode in MCF4 in the SMF scheme.

Fig. 17
Fig. 17

Maximum η S 4 of antiphase supermode and the optimal SMF core radius versus the cavity length.

Fig. 18
Fig. 18

Coupling coefficients for all the supermodes in MCF4 using Talbot cavity.

Fig. 19
Fig. 19

Comparison of the coupling coefficient differences in two mode selection schemes for MCF4.

Fig. 20
Fig. 20

Near fields (a)–(e) and far fields (f)–(j) of supermodes of the MCF7, with a = 5 μm , d = 17 μm .

Fig. 21
Fig. 21

Coupling coefficient η S 1 ( a s , z ) of the in-phase supermode in MCF7 in the SMF scheme.

Fig. 22
Fig. 22

Maximum η S 1 of in-phase supermode and the optimal SMF core radius versus the cavity length.

Fig. 23
Fig. 23

Coupling coefficient η S 4 ( a s , z ) of the antiphase supermode in MCF7 in the SMF scheme.

Fig. 24
Fig. 24

Maximum η S 6 of antiphase supermode and the optimal SMF core radius versus the cavity length.

Fig. 25
Fig. 25

Reflected coupling coefficient for all the supermodes in MCF7 using Talbot cavity.

Fig. 26
Fig. 26

Comparison of the coupling coefficient difference in two mode selection schemes for MCF7.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y , z ) = j A j ( z ) φ j ( x , y ) ,
φ j = { c J 0 ( U r j / a ) J 0 ( U ) , r j < a c K 0 ( W r j / a ) K 0 ( W ) , r j a , r j = ( x j 2 + y j 2 ) 1 / 2 ,
( t 2 + z 2 + n 2 ( x , y ) k 2 ) ψ ( x , y , z ) = 0 ,
( t 2 β j 2 + n j 2 ( x , y ) k 2 ) φ j ( x , y ) = 0 ,
A Z = i ( B + 1 2 C 1 K ) A .
B = β 0 I ,
C i j = β 0 φ i * φ j d x d y ,
K i j = [ ( n 2 ( x , y ) n j 2 ( x , y ) ] k 2 φ i * φ j d x d y .
φ F j ( x f , y f , z ) = 1 i λ Σ φ j ( x , y ) exp ( i k r ) r · 1 2 ( 1 + cos θ ) d x d y ,
ψ F i ( x f , y f , z ) = j A i j φ F j ( x f , y f , z ) ,
η S i ( a s , z ) = ( ψ F i * ( x f , y f , z ) φ s ( x f , y f , a s ) d x f d y f ) 2 | ψ F i * ( x f , y f , z ) | 2 d x f d y f · | φ s ( x f , y f , a s ) | 2 d x f d y f ,
η T i ( z ) = ψ F i * ( x , y , 2 z ) ψ i ( x , y ) d x d y | ψ F i * ( x , y , 2 z ) | 2 d x f d y f · | ψ i ( x , y ) | 2 d x d y .
Δ η = η 1 max ( η i ) , i = 2 , 3 , .
Δ η SMF ( a s , z ) = η S 1 ( a s , z ) max ( η S i ( a s , z ) ) , i = 2 , 3 .
Δ η Talbot ( z ) = η T 1 ( z ) max ( η T i ( z ) ) , i = 2 , 3 .

Metrics