Abstract

In this paper, a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. The combination of a GAPD with short dead time and a TDC with a multistop function enables the system to operate in a single-hit or a multihit mode during the acquisition of time-of-flight data. The software for the three-dimensional visualization and an algorithm for the removal of noise are developed. For the photon-counting LADAR system, we establish a theoretical model of target-detection and false-alarm probabilities in both the single-hit and multihit modes with a Poisson statistic; this model provides the prediction of the performance of the system and a technique for the acquisition of a noise image with a GAPD. Both the noise image and the three-dimensional image of a scene acquired by the photon-counting LADAR system during the day are presented.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [CrossRef]
  2. F. B., “Review of 20 years of range sensor development,” J. Electron. Imaging 13., 231–240 (2004).
    [CrossRef]
  3. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
    [CrossRef]
  4. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.
  5. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.
  6. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543–545 (1997).
    [CrossRef] [PubMed]
  7. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picoseconds resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
    [CrossRef]
  8. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063–1070(2002).
    [CrossRef] [PubMed]
  9. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernandez, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
    [CrossRef] [PubMed]
  10. M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
    [CrossRef] [PubMed]
  11. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503–549 (2002).
    [CrossRef]
  12. M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
    [CrossRef]
  13. M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
    [CrossRef]
  14. Id Quantique, http://www.idquantique.com/.
  15. Agilent, http://www.agilent.com/.
  16. EKF, http://www.ekf.de/.
  17. United Electronic Industries, http://www.ueidaq.com/.
  18. A. V. Jelaian, Laser Radar System (Artech, 1992).
  19. J. W. Goodman, Statistical Optics (Wiley, 1985).
  20. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388–5398 (2003).
    [CrossRef] [PubMed]

2010 (3)

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

2009 (1)

2004 (1)

F. B., “Review of 20 years of range sensor development,” J. Electron. Imaging 13., 231–240 (2004).
[CrossRef]

2003 (1)

2002 (5)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503–549 (2002).
[CrossRef]

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063–1070(2002).
[CrossRef] [PubMed]

2001 (1)

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picoseconds resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[CrossRef]

1997 (1)

1992 (1)

A. V. Jelaian, Laser Radar System (Artech, 1992).

1985 (1)

J. W. Goodman, Statistical Optics (Wiley, 1985).

Albota, M. A.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

Amann, M.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Aull, B. F.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

B., F.

F. B., “Review of 20 years of range sensor development,” J. Electron. Imaging 13., 231–240 (2004).
[CrossRef]

Bosch, T.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Buller, G.

Buller, G. S.

Carlson, R. R.

Collins, R. J.

Cova, S.

J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063–1070(2002).
[CrossRef] [PubMed]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picoseconds resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[CrossRef]

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503–549 (2002).
[CrossRef]

Fancey, S. J.

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

Fernandez, V.

Fouche, D. G.

D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388–5398 (2003).
[CrossRef] [PubMed]

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Heinriches, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

Heinrichs, R. M.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

Hong, K. H.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[CrossRef]

Jelaian, A. V.

A. V. Jelaian, Laser Radar System (Artech, 1992).

Kim, B. W.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[CrossRef]

Kim, T. H.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

Kong, H. J.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[CrossRef]

Krichel, N. J.

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

Lescure, M.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

Marino, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

Massa, J.

Massa, J. S.

McCarthy, A.

Mooney, J.

Mooney, J. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

Myllylä, R.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

O’Brien, M. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

Oh, M. S.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[CrossRef]

Park, D. J.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picoseconds resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[CrossRef]

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

Rioux, M.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Smith, G.

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picoseconds resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[CrossRef]

Umasuthan, M.

Walker, A.

Walker, A. C.

Wallace, A.

Wallace, A. M.

Willard, B. C.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

Zayhowski, J. J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
[CrossRef]

Appl. Opt. (4)

J. Electron. Imaging (1)

F. B., “Review of 20 years of range sensor development,” J. Electron. Imaging 13., 231–240 (2004).
[CrossRef]

J. Geodyn. (1)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503–549 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49, 026601 (2010).
[CrossRef]

Lincoln Lab. J. (2)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–350 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinriches, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).http://www.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2laserradars3d.pdf.

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picoseconds resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[CrossRef]

Opt. Commun. (1)

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[CrossRef]

Opt. Eng. (1)

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J. Park, “Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode,” Rev. Sci. Instrum. 81, 033109 (2010).
[CrossRef] [PubMed]

Other (6)

Id Quantique, http://www.idquantique.com/.

Agilent, http://www.agilent.com/.

EKF, http://www.ekf.de/.

United Electronic Industries, http://www.ueidaq.com/.

A. V. Jelaian, Laser Radar System (Artech, 1992).

J. W. Goodman, Statistical Optics (Wiley, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the LADAR system.

Fig. 2
Fig. 2

Optical system. L, lens; HWP, half-wave plate; PBS, polarization beam splitter; QWP, quarter-wave plate; M, mirror; OBF, optical bandpass filter; PD, photodiode.

Fig. 3
Fig. 3

Laser range equation model.

Fig. 4
Fig. 4

Rate function, R PE , versus time bin.

Fig. 5
Fig. 5

Target-detection (solid line) and the false-alarm (dashed line) probabilities versus S PE _ j curves corresponding to the distance (a)  10 m , (b)  75 m , and (c)  140 m for single-hit mode (left) and multihit mode (right). The color of the line represents different noise conditions (red, top, N PE = 100 kHz ; blue, middle, N PE = 1 Mhz ; black bottom, N PE = 10 MHz ), where τ gate = 1 μs ).

Fig. 6
Fig. 6

(a) Two-dimensional intensity image and (b) noise image.

Fig. 7
Fig. 7

Three-dimensional images after thresholding. (a) Front view of the roof of the building, (b) top view of the roof of the building, (c) front view of the receiver antenna, and (d) top view of the receiver antenna.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P RETURN ( t ) = P EMIT ( t τ target ) × FOV 2 θ T 2 ρ π cos θ target A R R 2 η T η R η A 2 ,
τ target = 2 R / c ,
S PE ( t ) = η Q h ν τ target + T delay P RETURN ( τ T delay ) × Jitter ( t τ ) d τ ,
N PE = η Q N BG + f Dark ,
P ( m ; t 1 , t 2 ) = 1 m ! [ M ( t 1 , t 2 ) ] m exp [ M ( t 1 , t 2 ) ] ,
M ( t 1 , t 2 ) = t 1 t 2 R PE ( t ) d t .
P D _ single ( i ) = exp [ 0 ( i 1 ) τ bin R PE ( t ) d t ] × { 1 exp [ ( i 1 ) τ bin i τ bin R PE ( t ) d t ] } ,
P D _ multi ( i ) = exp [ ( i 1 d ) τ bin ( i 1 ) τ bin R PE ( t ) d t ] × { 1 exp [ ( i 1 ) τ bin i τ bin R PE ( t ) d t ] } ,
P D _ target _ single = P D _ single ( j ) = exp [ N PE τ bin ( j 1 ) ] × { 1 exp [ ( N PE τ bin + S PE _ j ) ] } ,
P D _ target _ multi = P D _ multi ( j ) = exp [ N PE τ bin ( j 1 ) ] × { 1 exp [ ( N PE τ bin + S PE _ j ) ] } ( j d ) exp ( N PE τ bin d ) × { 1 exp [ ( N PE τ bin + S PE _ j ) ] } ( j > d ) .
P False _ single = i = 1 i j N P D _ single ( i ) ,
P False _ multi = i = 1 i j N P D _ multi ( i ) ,

Metrics