Abstract

We mathematically prove and numerically demonstrate that the source of the convergence problem of the anal ytical modal method and the Fourier modal method for modeling some lossless metal-dielectric lamellar gratings in TM polarization recently reported by Gundu and Mafi [J. Opt. Soc. Am. A 27, 1694 (2010)] is the existence of irregular field singularities at the edges of the grating grooves. We show that Fourier series are incapable of representing the transverse electric field components in the vicinity of an edge of irregular field singularity; therefore, any method, not necessarily of modal type, using Fourier series in this way is doomed to fail. A set of precise and simple criteria is given with which, given a lamellar grating, one can predict whether the conventional implementation of a modal method of any kind will converge without running a convergence test.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription