Abstract

We report the results of studies of the torsion effect on the optical birefringence in LiNbO3 crystals. We found that the twisting of those crystals causes a birefringence distribution revealing nontrivial peculiarities. In particular, they have a special point at the center of the cross section perpendicular to the torsion axis where the zero birefringence value occurs. It has also been ascertained that the surface of the spatial birefringence distribution has a conical shape, with the cone axis coinciding with the torsion axis. We revealed that an optical vortex, with a topological charge equal to unity, appears under the torsion of LiNbO3 crystals. It has been shown that, in contrast to the q plate, both the efficiency of spin-orbital coupling and the orbital momentum of the emergent light can be operated by the torque moment.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Soskin and M. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
    [CrossRef]
  2. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [CrossRef] [PubMed]
  3. E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991).
    [CrossRef]
  4. A. V. Volyar, “Fiber singular optics,” Ukr. J. Phys. Opt. 3, 69–96(2002).
    [CrossRef]
  5. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863(2010).
    [CrossRef] [PubMed]
  6. G. Cincotti, A. Ciatoni, and C. Palma, “Laguerre–Gaussian and Bessel–Gaussian beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680–1688 (2002).
    [CrossRef]
  7. A. Volyar and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 450–457 (2006).
    [CrossRef]
  8. A. Ciattoni, G. Cincotti, and C. Palma, “Circular polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20, 163–171 (2003).
    [CrossRef]
  9. T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815 (2009).
    [CrossRef]
  10. F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
    [CrossRef]
  11. M. V. Berry and M. R. Jeffrey, “Chapter 2. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
    [CrossRef]
  12. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685–690 (2005).
    [CrossRef]
  13. R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003).
    [CrossRef]
  14. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocation (Institute of Physics, 1999).
  15. Y. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A: Pure Appl. Opt. 6, S217–S228 (2004).
    [CrossRef]
  16. T. A. Fadeyeva, and A. V. Volyar, “Extreme spin-orbit coupling in crystal-traveling paraxial beams,” J. Opt. Soc. Am. A 27, 381–389 (2010).
    [CrossRef]
  17. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef] [PubMed]
  18. C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009).
    [CrossRef]
  19. C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A: Pure Appl. Opt. 6, 824–832 (2004).
    [CrossRef]
  20. R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998).
    [CrossRef]
  21. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).
  22. R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “The elasto-optic effect in LiNbO3 crystals under the torsion,” Fiz. Tverd. Tela 33, 2467–2470 (1991).
  23. R. Vlokh, Y. Pyatak, and I. Skab, “Elasto-optic effect in LiNbO3 under the crystal bending,” Ferroelectrics 126, 239–242(1992).
    [CrossRef]
  24. R. Vlokh, M. Kostyrko, and I. Skab, “The observation of “neutral” birefringence line in LiNbO3 crystals under torsion,” Ferroelectrics 203, 113–117 (1997).
    [CrossRef]
  25. R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description for gradients of piezogyration and piezooptics produced by twisting and bending,” Crystallogr. Rep. (Transl. Kristallografiya) 42, 1011–1013 (1997).
  26. R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).
  27. K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359(1964).
    [CrossRef]
  28. I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010).
    [CrossRef]
  29. R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
    [CrossRef]
  30. S. Kaufmann and U. W. E. Zeitner, “Unambiguous measuring of great retardations with a modified Senarmont method,” Optik (Jena) 113, 476–480 (2002).
    [CrossRef]
  31. Y. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).
  32. T. A. Fadeyeva and A. V. Volyar, “Extreme spin-orbit coupling in crystal-traveling paraxial beams,” J. Opt. Soc. Am. A 27, 381–389 (2010).
    [CrossRef]
  33. Almaz Optics, Inc., “Lithium niobate, LiNbO3,” http://www.almazoptics.com/LiNbO3.htm.
  34. Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010).
    [CrossRef]
  35. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
    [CrossRef]
  36. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
    [CrossRef]
  37. A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, 1989).
  38. M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6, 289–300 (2004).
    [CrossRef]

2010 (5)

2009 (2)

T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815 (2009).
[CrossRef]

C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009).
[CrossRef]

2007 (1)

M. V. Berry and M. R. Jeffrey, “Chapter 2. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[CrossRef]

2006 (2)

A. Volyar and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 450–457 (2006).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef]

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685–690 (2005).
[CrossRef]

2004 (3)

Y. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A: Pure Appl. Opt. 6, S217–S228 (2004).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A: Pure Appl. Opt. 6, 824–832 (2004).
[CrossRef]

M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6, 289–300 (2004).
[CrossRef]

2003 (2)

R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003).
[CrossRef]

A. Ciattoni, G. Cincotti, and C. Palma, “Circular polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20, 163–171 (2003).
[CrossRef]

2002 (3)

G. Cincotti, A. Ciatoni, and C. Palma, “Laguerre–Gaussian and Bessel–Gaussian beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680–1688 (2002).
[CrossRef]

A. V. Volyar, “Fiber singular optics,” Ukr. J. Phys. Opt. 3, 69–96(2002).
[CrossRef]

S. Kaufmann and U. W. E. Zeitner, “Unambiguous measuring of great retardations with a modified Senarmont method,” Optik (Jena) 113, 476–480 (2002).
[CrossRef]

2001 (2)

R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
[CrossRef]

M. Soskin and M. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

1998 (1)

R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998).
[CrossRef]

1997 (2)

R. Vlokh, M. Kostyrko, and I. Skab, “The observation of “neutral” birefringence line in LiNbO3 crystals under torsion,” Ferroelectrics 203, 113–117 (1997).
[CrossRef]

R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description for gradients of piezogyration and piezooptics produced by twisting and bending,” Crystallogr. Rep. (Transl. Kristallografiya) 42, 1011–1013 (1997).

1992 (2)

1991 (2)

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991).
[CrossRef]

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “The elasto-optic effect in LiNbO3 crystals under the torsion,” Fiz. Tverd. Tela 33, 2467–2470 (1991).

1989 (1)

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
[CrossRef]

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[CrossRef]

1964 (1)

K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359(1964).
[CrossRef]

Abramochkin, E.

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991).
[CrossRef]

Aizu, K.

K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359(1964).
[CrossRef]

Alexeyev, C. N.

C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A: Pure Appl. Opt. 6, 824–832 (2004).
[CrossRef]

Berry, M. V.

M. V. Berry and M. R. Jeffrey, “Chapter 2. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[CrossRef]

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685–690 (2005).
[CrossRef]

M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6, 289–300 (2004).
[CrossRef]

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
[CrossRef]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[CrossRef]

Borshak, E. V.

C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009).
[CrossRef]

Brasselet, E.

Ciatoni, A.

Ciattoni, A.

Cincotti, G.

Dennis, M. R.

F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef]

Desyatnikov, A.

Egorov, Y.

Y. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A: Pure Appl. Opt. 6, S217–S228 (2004).
[CrossRef]

Fadeyeva, T.

A. Volyar and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 450–457 (2006).
[CrossRef]

Y. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A: Pure Appl. Opt. 6, S217–S228 (2004).
[CrossRef]

Fadeyeva, T. A.

Flossman, F.

F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef]

Heckenberg, N. R.

Izdebskaya, Y. V.

Jeffrey, M. R.

M. V. Berry and M. R. Jeffrey, “Chapter 2. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[CrossRef]

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685–690 (2005).
[CrossRef]

Kaufmann, S.

S. Kaufmann and U. W. E. Zeitner, “Unambiguous measuring of great retardations with a modified Senarmont method,” Optik (Jena) 113, 476–480 (2002).
[CrossRef]

Kivshar, Y. S.

Kostyrko, M.

R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
[CrossRef]

R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998).
[CrossRef]

R. Vlokh, M. Kostyrko, and I. Skab, “The observation of “neutral” birefringence line in LiNbO3 crystals under torsion,” Ferroelectrics 203, 113–117 (1997).
[CrossRef]

Kostyrko, M. E.

R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description for gradients of piezogyration and piezooptics produced by twisting and bending,” Crystallogr. Rep. (Transl. Kristallografiya) 42, 1011–1013 (1997).

Krolikowski, W.

Krupych, O.

R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003).
[CrossRef]

R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
[CrossRef]

Maier, M.

F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef]

Mansuripur, M.

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685–690 (2005).
[CrossRef]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

McDuff, R.

Mys, O.

R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003).
[CrossRef]

Narasimhamurty, T. S.

T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).

Neshev, D. N.

Netolya, V.

R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
[CrossRef]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[CrossRef]

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocation (Institute of Physics, 1999).

Palma, C.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Pyatak, Y.

R. Vlokh, Y. Pyatak, and I. Skab, “Elasto-optic effect in LiNbO3 under the crystal bending,” Ferroelectrics 126, 239–242(1992).
[CrossRef]

Pyatak, Y. A.

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “The elasto-optic effect in LiNbO3 crystals under the torsion,” Fiz. Tverd. Tela 33, 2467–2470 (1991).

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).

Rubass, A. F.

T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815 (2009).
[CrossRef]

Savaryn, V.

Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010).
[CrossRef]

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010).
[CrossRef]

Schwarz, U. T.

F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef]

Shapere, A.

A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, 1989).

Shaskolskaya, M. P.

Y. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).

Shvedov, V. G.

Sirotin, Y. I.

Y. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).

Skab, I.

Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010).
[CrossRef]

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010).
[CrossRef]

R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998).
[CrossRef]

R. Vlokh, M. Kostyrko, and I. Skab, “The observation of “neutral” birefringence line in LiNbO3 crystals under torsion,” Ferroelectrics 203, 113–117 (1997).
[CrossRef]

R. Vlokh, Y. Pyatak, and I. Skab, “Elasto-optic effect in LiNbO3 under the crystal bending,” Ferroelectrics 126, 239–242(1992).
[CrossRef]

Skab, I. P.

R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description for gradients of piezogyration and piezooptics produced by twisting and bending,” Crystallogr. Rep. (Transl. Kristallografiya) 42, 1011–1013 (1997).

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “The elasto-optic effect in LiNbO3 crystals under the torsion,” Fiz. Tverd. Tela 33, 2467–2470 (1991).

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).

Smaga, I.

Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010).
[CrossRef]

Smith, C. P.

Soskin, M.

M. Soskin and M. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Trach, I.

R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
[CrossRef]

Vasnetsov, M.

M. Soskin and M. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Vasylkiv, Y.

Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010).
[CrossRef]

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010).
[CrossRef]

Vlokh, R.

Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010).
[CrossRef]

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010).
[CrossRef]

R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003).
[CrossRef]

R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
[CrossRef]

R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998).
[CrossRef]

R. Vlokh, M. Kostyrko, and I. Skab, “The observation of “neutral” birefringence line in LiNbO3 crystals under torsion,” Ferroelectrics 203, 113–117 (1997).
[CrossRef]

R. Vlokh, Y. Pyatak, and I. Skab, “Elasto-optic effect in LiNbO3 under the crystal bending,” Ferroelectrics 126, 239–242(1992).
[CrossRef]

Vlokh, R. O.

R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description for gradients of piezogyration and piezooptics produced by twisting and bending,” Crystallogr. Rep. (Transl. Kristallografiya) 42, 1011–1013 (1997).

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “The elasto-optic effect in LiNbO3 crystals under the torsion,” Fiz. Tverd. Tela 33, 2467–2470 (1991).

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).

Volostnikov, V.

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991).
[CrossRef]

Volyar, A.

A. Volyar and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 450–457 (2006).
[CrossRef]

Y. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A: Pure Appl. Opt. 6, S217–S228 (2004).
[CrossRef]

R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003).
[CrossRef]

Volyar, A. V.

T. A. Fadeyeva and A. V. Volyar, “Extreme spin-orbit coupling in crystal-traveling paraxial beams,” J. Opt. Soc. Am. A 27, 381–389 (2010).
[CrossRef]

T. A. Fadeyeva, and A. V. Volyar, “Extreme spin-orbit coupling in crystal-traveling paraxial beams,” J. Opt. Soc. Am. A 27, 381–389 (2010).
[CrossRef]

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863(2010).
[CrossRef] [PubMed]

T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815 (2009).
[CrossRef]

C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009).
[CrossRef]

A. V. Volyar, “Fiber singular optics,” Ukr. J. Phys. Opt. 3, 69–96(2002).
[CrossRef]

White, A. G.

Wilczek, F.

A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, 1989).

Yavorsky, M. A.

C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A: Pure Appl. Opt. 6, 824–832 (2004).
[CrossRef]

Zeitner, U. W. E.

S. Kaufmann and U. W. E. Zeitner, “Unambiguous measuring of great retardations with a modified Senarmont method,” Optik (Jena) 113, 476–480 (2002).
[CrossRef]

Crystallogr. Rep. (Transl. Kristallografiya) (1)

R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description for gradients of piezogyration and piezooptics produced by twisting and bending,” Crystallogr. Rep. (Transl. Kristallografiya) 42, 1011–1013 (1997).

Ferroelectrics (2)

R. Vlokh, Y. Pyatak, and I. Skab, “Elasto-optic effect in LiNbO3 under the crystal bending,” Ferroelectrics 126, 239–242(1992).
[CrossRef]

R. Vlokh, M. Kostyrko, and I. Skab, “The observation of “neutral” birefringence line in LiNbO3 crystals under torsion,” Ferroelectrics 203, 113–117 (1997).
[CrossRef]

Fiz. Tverd. Tela (1)

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “The elasto-optic effect in LiNbO3 crystals under the torsion,” Fiz. Tverd. Tela 33, 2467–2470 (1991).

J. Opt. A: Pure Appl. Opt. (5)

Y. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A: Pure Appl. Opt. 6, S217–S228 (2004).
[CrossRef]

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685–690 (2005).
[CrossRef]

C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A: Pure Appl. Opt. 6, 824–832 (2004).
[CrossRef]

M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6, 289–300 (2004).
[CrossRef]

J. Opt. Soc. Am. A (4)

Jpn. J. Appl. Phys. (1)

R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998).
[CrossRef]

Opt. Commun. (1)

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Spectrosc. (1)

A. Volyar and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 450–457 (2006).
[CrossRef]

Optik (Jena) (1)

S. Kaufmann and U. W. E. Zeitner, “Unambiguous measuring of great retardations with a modified Senarmont method,” Optik (Jena) 113, 476–480 (2002).
[CrossRef]

Phys. Rev. (1)

K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359(1964).
[CrossRef]

Phys. Rev. A (1)

T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A (2)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[CrossRef]

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
[CrossRef]

Prog. Opt. (2)

M. V. Berry and M. R. Jeffrey, “Chapter 2. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[CrossRef]

M. Soskin and M. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Ukr. Fiz. Zhurn. (1)

R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).

Ukr. J. Phys. Opt. (5)

I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010).
[CrossRef]

R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001).
[CrossRef]

A. V. Volyar, “Fiber singular optics,” Ukr. J. Phys. Opt. 3, 69–96(2002).
[CrossRef]

R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003).
[CrossRef]

Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010).
[CrossRef]

Other (5)

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocation (Institute of Physics, 1999).

T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).

Y. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).

A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, 1989).

Almaz Optics, Inc., “Lithium niobate, LiNbO3,” http://www.almazoptics.com/LiNbO3.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Shape and orientation of the LiNbO 3 crystal sample.

Fig. 2
Fig. 2

Schematic representation of our imaging polarimeter. I, light source section; II, polarization generator; III, sample section; IV, polarization analyzer; V, controlling unit; 1, He–Ne laser; 2, ray shutter; 3, 8, polarizers; 4, 9, quarter-wave plates; 5, coherence scrambler; 6, beam expander; 7, spatial filter; 10, analyzer; 11, objective lens; 12, CCD camera; 13, TV monitor; 14, frame grabber; 15, personal computer; 16, shutter’s controller; 17, step motors’ controllers; 18, step motors; 19, reference position controller.

Fig. 3
Fig. 3

Spatial distributions of optical indicatix rotation in LiNbO 3 crystals at λ = 632.8 nm : (a) the pattern observed experimentally under the torsion torque M z = 63.77 × 10 3 N × m , (b), (c) the patterns appearing for the two opposite torsion torques, which are simulated using Eqs. (11, 13). Orientations of optical indicatrices are denoted by ellipses.

Fig. 4
Fig. 4

(a) Spatial distribution of birefringence induced by the torsion torque M z = 63.77 × 10 3 N × m (open circles correspond to scanning along the X axis under the action of σ 32 stress, open triangles correspond to scanning along the Y axis under the action of σ 31 stress, and crosses correspond to scanning along the bisector of the X and Y axes under the action of σ = σ 31 = σ 32 stress; a scale corresponding to the shear stress components is also shown; dependence in the upper right side corresponds to the induced birefringence rewritten in the coordinate system associated with eigenvectors of the optical indicatrix) and (b) distribution of rotation angle (in angular degrees) of the light polarization plane behind the quarter-wave plate in the case of scanning along the X axis.

Fig. 5
Fig. 5

Experimental distribution of birefringence induced by the torsion torque M z = 63.77 × 10 3 N × m in the X Y plane of LiNbO 3 crystals at 632.8 nm .

Fig. 6
Fig. 6

Experimental conical spatial distribution of optical birefringence appearing under the torsion of LiNbO 3 crystals (the torsion torque M z = 63.77 × 10 3 N × m and λ = 632 . 8 nm ).

Fig. 7
Fig. 7

CCD image of the expanded beam emergent from the system consisting of a right-handed circular polarizer, a twisted sample, and a left-handed circular polarizer. (a) M z = 63 . 77 × 10 3 N × m , (b) M z = 98 × 10 3 N × m , (c) M z = 162 × 10 3 N × m .

Fig. 8
Fig. 8

Simulated phase difference distribution induced by the torsion torque M z = 63.77 × 10 3 N × m in the X Y plane of LiNbO 3 crystals at 632.8 nm .

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Δ B i j = B i j B i j 0 = π i j k l σ k l ,
I = I 0 2 { 1 + sin Δ Γ sin [ 2 ( α φ ) ] } = C 1 + C 2 sin [ 2 ( α C 3 ) ] ,
C 1 = I 0 2 , C 2 = I 0 2 sin Δ Γ , C 3 = φ .
sin Δ Γ = C 2 / C 1 ,
σ μ = 2 M z π R 4 ( X δ 4 μ Y δ 5 μ ) ,
σ 32 = 2 M z π R 4 X ,
σ 31 = 2 M z π R 4 Y ,
σ 11 σ 22 σ 33 σ 32 σ 31 σ 21 Δ B 11 π 11 π 12 π 13 π 14 0 0 Δ B 22 π 11 π 11 π 13 π 14 0 0 Δ B 33 π 31 π 31 π 33 0 0 0 Δ B 32 π 41 π 41 0 π 44 0 0 Δ B 31 0 0 0 0 π 44 2 π 41 Δ B 21 0 0 0 0 π 14 π 66 .
( B 11 + π 14 σ 32 ) X 2 + ( B 11 π 14 σ 32 ) Y 2 + B 33 Z 2 + 2 π 44 σ 32 Y Z + 2 π 44 σ 31 X Z + 2 π 14 σ 31 X Y = 1 .
tan 2 ς z = σ 31 σ 32 .
tan 2 ς z = 2 π 14 σ 31 B 11 B 11 = 2 π 14 B 11 B 11 2 M z π R 4 Y ± , ς z ± 45 ° ,
tan 2 ζ z = 0 , ζ z = 0
tan 2 ζ z = σ 31 σ 32 = Y X = sin φ cos φ = tan φ .
( B 11 + π 14 σ 32 ) X 2 + ( B 11 π 14 σ 32 ) Y 2 + 2 π 14 σ 31 X Y = 1 .
n 1 = n o + 1 2 n 0 3 π 14 σ 31 2 + σ 32 2 , n 2 = n o 1 2 n 0 3 π 14 σ 31 2 + σ 32 2 ,
n 1 = n 0 + n 0 3 π 14 M z π R 4 Y 2 + X 2 , n 2 = n 0 n 0 3 π 14 M z π R 4 Y 2 + X 2 ,
n 1 = n 0 + n 0 3 π 14 M z π R 4 ρ , n 2 = n 0 n 0 3 π 14 M z π R 4 ρ .
Δ n = n 0 3 π 14 σ 31 2 + σ 32 2 = 2 n 0 3 π 14 M z π R 4 Y 2 + X 2 = 2 n 0 3 π 14 M z π R 4 ρ .
J k l = | ( e i Δ Γ k l / 2 cos 2 ζ k l + e i Δ Γ k l / 2 sin 2 ζ k l ) i sin ( Δ Γ k l / 2 ) sin 2 ζ k l i sin ( Δ Γ k l / 2 ) sin 2 ζ k l ( e i Δ Γ k l / 2 sin 2 ζ k l + e i Δ Γ k l / 2 cos 2 ζ k l ) | ,
( σ 32 ) k l = 2 M z π R 4 ( k 30 10 10 3 ) , ( σ 31 ) k l = 2 M z π R 4 ( l 30 10 10 3 ) , Δ Γ k l = 2 π d { n 0 3 π 14 ( σ 32 ) k l 2 + ( σ 31 ) k l 2 } / λ , ζ k l = 1 2 arctan ( σ 32 ) k l ( σ 31 ) k l ,
| E 1 k l E 2 k l | = J A J QWP J k l J QWP + | E 1 E 2 | ,
E 1 = 1 , E 2 = 0 , J A = ( 0 0 0 1 ) , J QWP = ( 1 2 e i π 4 1 2 e i π 4 1 2 e i π 4 1 2 e i π 4 ) , J QWP + = ( 1 2 e i π 4 1 2 e i π 4 1 2 e i π 4 1 2 e i π 4 ) ,
Δ Γ k l = arctan ( Im E 1 k l Re E 1 k l ) arctan ( Im E 2 k l Re E 2 k l ) .

Metrics