Abstract

We discuss the statistical properties of speckle of the logarithmically transformed signal in optical coherence tomography (OCT) both theoretically and experimentally. OCT signals of Intralipid solution with different volume particle concentrations ρ (correspondingly, scattering coefficient μs ranges from 1.25 to 25.11mm1) were measured and analyzed under two different focusing conditions [numerical apertures (NAs) of the objective lens of 0.13 and 0.25]. We found that the effect of the speckle noise can be suppressed by displaying OCT images in the logarithmic scale and by using the objective lens with a higher NA. We also found that the speckle properties are correlated with the scattering properties of the sample, which may be used to characterize the scattering properties of biological tissue. The simulated OCT image and the in vitro OCT image of a rat liver are used as examples to demonstrate the feasibility of the method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
    [CrossRef] [PubMed]
  3. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
    [CrossRef]
  4. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
    [CrossRef] [PubMed]
  5. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
    [CrossRef] [PubMed]
  6. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
    [CrossRef] [PubMed]
  7. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
    [CrossRef] [PubMed]
  8. M. Mogensen and G. B. Jemec, “Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies,” Dermatol. Surg. 33, 1158–1174 (2007).
    [CrossRef] [PubMed]
  9. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105(1999).
    [CrossRef]
  10. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  11. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
    [CrossRef]
  12. Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997).
    [CrossRef] [PubMed]
  13. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  14. K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
    [CrossRef] [PubMed]
  15. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31, 190–192 (2006).
    [CrossRef] [PubMed]
  16. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15 (2008).
    [CrossRef]
  17. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003).
    [CrossRef] [PubMed]
  18. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593–596 (2005).
    [CrossRef]
  19. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000).
    [CrossRef]
  20. J. W. Goodman, Statistical Optics (Wiley, 2000).
  21. A. E. Desjardins, B. J. Vakoc, A. Bilenca, G. J. Tearney, and B. E. Bouma, “Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging,” Opt. Lett. 32, 1560–1562 (2007).
    [CrossRef] [PubMed]
  22. H. H. Arsenault and G. April, “Properties of speckle integrated with a finite aperture and logarithmically transformed,” J. Opt. Soc. Am. 66, 1160–1163 (1976).
    [CrossRef]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514(1991).
    [CrossRef] [PubMed]
  24. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42, 4375–4380 (2003).
    [CrossRef] [PubMed]
  25. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
    [CrossRef] [PubMed]
  26. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
    [CrossRef] [PubMed]
  27. R. C. Weast, Handbook of Chemistry and Physics (CRC, 1978).
  28. http://omlc.ogi.edu/calc/mie_calc.html.
  29. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [CrossRef] [PubMed]
  30. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
    [CrossRef] [PubMed]
  31. Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
    [CrossRef] [PubMed]
  32. P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330(1989).
    [CrossRef] [PubMed]

2008 (4)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
[CrossRef]

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15 (2008).
[CrossRef]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[CrossRef] [PubMed]

Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
[CrossRef] [PubMed]

2007 (2)

A. E. Desjardins, B. J. Vakoc, A. Bilenca, G. J. Tearney, and B. E. Bouma, “Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging,” Opt. Lett. 32, 1560–1562 (2007).
[CrossRef] [PubMed]

M. Mogensen and G. B. Jemec, “Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies,” Dermatol. Surg. 33, 1158–1174 (2007).
[CrossRef] [PubMed]

2006 (2)

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31, 190–192 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593–596 (2005).
[CrossRef]

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

2004 (1)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

2003 (3)

2001 (3)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105(1999).
[CrossRef]

1997 (2)

1995 (2)

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

1993 (1)

1991 (2)

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514(1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

1976 (1)

Adie, S. G.

Altmeyer, P.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

April, G.

Armstrong, J. J.

Arsenault, H. H.

Barton, J. K.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Bashkansky, M.

Bianco, S. Del

Bilenca, A.

Birngruber, R.

Bonner, R. F.

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

Borghese, F.

Bouma, B. E.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Cai, S.

Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
[CrossRef] [PubMed]

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[CrossRef] [PubMed]

Cense, B.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

de Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

Denti, P.

Desjardins, A. E.

Drexler, W.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Duncan, D. D.

Engelhardt, R.

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Giusto, A.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 2000).

Gossage, K. W.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hariri, L. P.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Hassler, K.

He, Y.

Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hillman, T. R.

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003).
[CrossRef] [PubMed]

Hoffmann, K.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Iatì, M. A.

Jacques, S. L.

Jemec, G. B.

M. Mogensen and G. B. Jemec, “Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies,” Dermatol. Surg. 33, 1158–1174 (2007).
[CrossRef] [PubMed]

Kanter, E. M.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Karamata, B.

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Knüttel, A.

Lasser, T.

Laubscher, M.

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003).
[CrossRef] [PubMed]

Li, H.

Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
[CrossRef] [PubMed]

Li, Z.

Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Martelli, F.

Moes, C. J. M.

Mogensen, M.

M. Mogensen and G. B. Jemec, “Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies,” Dermatol. Surg. 33, 1158–1174 (2007).
[CrossRef] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Moussa, G.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Nishioka, N. S.

Pan, Y.

Park, B. H.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

Parsa, P.

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003).
[CrossRef] [PubMed]

Prahl, S. A.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reintjes, J.

Rodriguez, J. J.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Saija, R.

Sampson, D. D.

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105(1999).
[CrossRef]

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seemann, V.

Sindoni, O. I.

Smith, C. M.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stone, A. L.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Vakoc, B. J.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[CrossRef] [PubMed]

Wang, R. K.

Weast, R. C.

R. C. Weast, Handbook of Chemistry and Physics (CRC, 1978).

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

Williams, S. K.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105(1999).
[CrossRef]

Xie, S.

Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
[CrossRef] [PubMed]

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[CrossRef] [PubMed]

Yadlowsky, M. J.

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105(1999).
[CrossRef]

Zaccanti, G.

Appl. Opt. (6)

Dermatol. Surg. (1)

M. Mogensen and G. B. Jemec, “Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies,” Dermatol. Surg. 33, 1158–1174 (2007).
[CrossRef] [PubMed]

Dermatology (1)

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105(1999).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565–569(2003).
[CrossRef] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[CrossRef] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (2)

Z. Li, H. Li, Y. He, S. Cai, and S. Xie, “A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues,” Phys. Med. Biol. 53, 5859–5866 (2008).
[CrossRef] [PubMed]

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563–1575 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27, 45–88 (2008).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Skin Res. Technol. (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

Other (4)

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

J. W. Goodman, Statistical Optics (Wiley, 2000).

R. C. Weast, Handbook of Chemistry and Physics (CRC, 1978).

http://omlc.ogi.edu/calc/mie_calc.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of OCT system.

Fig. 2
Fig. 2

OCT signals obtained from Intralipid solution at different concentrations ρ with NA = 0.25 . They are calculated by averaging over 200 in-depth scans covering ~ 1.8 mm in the lateral direction in logarithmic scale.

Fig. 3
Fig. 3

Dependence of speckle contrast on depth for 1% Intralipid solution with NA = 0.25 . The dashed line reports the speckle contrast of the OCT signal in linear scale, and the averaged contrast is 0.529. The dotted line represents 0.523. The dashed–dotted curve and the points report the experimental and theoretical speckle contrast of the OCT signal in logarithmic scale, respectively. And the solid curve reports the linear fit to the experimental logarithmic speckle contrast. The slope of the fitted curve is 0.202. C 1 and C 2 are the contrast at the top and bottom of the ROI, respectively.

Fig. 4
Fig. 4

Speckle contrast ( mean ± standard deviations) (a) C, (b)  C 1 , and (c)  C 2 versus the volume particle concentration ρ of the Intralipid solution. The upward-pointing triangles report the results acquired with NA = 0.13 . The asterisks report the results acquired with NA = 0.25 .

Fig. 5
Fig. 5

Slope of the speckle contrast ( mean ± standard deviations) as a function of depth plotted against the volume particle concentration ρ of Intralipid solution for the OCT data in logarithmic scale. The upward-pointing triangles report the results acquired with NA = 0.13 . The asterisks report the results acquired with NA = 0.25 .

Fig. 6
Fig. 6

An example of the determination of the scattering coefficient through the measurement of the slope of the depth- dependent speckle contrast: (a)  OCT image simulated by Schmitt et al., as displayed in Fig. 5(b) of Ref. [13] and (b) points and solid line report the speckle contrast of the OCT signal in logarithmic scale and the linear fit to it, respectively. The slope of the fitted curve is about 0.18.

Fig. 7
Fig. 7

In vitro OCT image of rat liver.

Fig. 8
Fig. 8

Plot of the depth-dependent speckle contrast of rat liver images. The dashed–dotted curve and the solid curve report the speckle contrast of the OCT signal in logarithmic scale and the linear fit to it, respectively. The slope of the fitted curve is about 0.232.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

p ( A ) = A σ 2 exp ( A 2 2 σ 2 ) ,
C = 4 / π 1 0.523 .
D I = D I 0 γ , σ D I 2 = π 2 / 6 ,
D A = D I / 2 = ( D I 0 γ ) / 2 , σ D A 2 = D A 2 D A 2 = σ D I 2 / 4 = π 2 / 24 .
C D = σ D A D A = π 6 ( D I 0 γ ) .
n ( λ 0 ) = n 0 + n 2 / λ 0 2 + n 4 / λ 0 4 ,
i ( z ) μ b exp ( 2 μ t z ) ,

Metrics