Abstract

We present a variant of the method of Fox and Li [Bell Syst. Tech. J. 40, 453 (1961); Proc. IEEE 51, 80 (1963)] dedicated to intracavity laser beam shaping for resonators containing an arbitrary number of amplitude and phase diffractive optics. Contrary to Fox and Li, the starting point is the desired field. The latter is injected into the usual sequence of lenses representing just a single round trip, and the optimization process iterates until the input and the output fields match as much as possible. We illustrate this technique by deriving a simple model for generating single cylindrical TEMp0 modes, thanks to a π-phase plate placed inside a plano-concave cavity. The experimental validation attests an excellent agreement with numerical predictions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription