Abstract

We report Q-factor enhancement in a one-dimensional (1D) photonic crystal (PC) cavity by embedding elec tromagnetic-induced-transparency (EIT) planar plasmonic metamaterials in the cavity. Microwave experiments show tenfold Q-factor enhancements, confirming the numerical simulations. More importantly, the Q-factor enhancement is mainly due to both the longitudinal and lateral confinements contributed by the 1D PC cavity and the planar EIT metamaterials, respectively. The combined PC-EIT structure with a prominent cavity figure of merit may find new applications in nonlinear optics, cavity quantum electrodynamics, and low-threshold lasers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  2. A. Vukics, W. Niedenzu, and H. Ritsch, “Cavity nonlinear optics with few photons and ultracold quantum particles,” Phys. Rev. A 79, 013828 (2009).
    [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  4. T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009).
    [CrossRef]
  5. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084-12089 (2008).
    [CrossRef] [PubMed]
  6. Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonance in photonic crystal slabs,” Appl. Phys. Lett. 93, 261110 (2008).
    [CrossRef]
  7. J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
    [CrossRef]
  8. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  9. T. Xu, M. S. Wheeler, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “The influence of material absorption on the quality factor of photonic crystal cavities,” Opt. Express 17, 8343-8348 (2009).
    [CrossRef] [PubMed]
  10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
    [CrossRef]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
    [CrossRef]
  12. G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
    [CrossRef]
  13. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295-297 (1998).
    [CrossRef]
  14. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732-1734 (2000).
    [CrossRef]
  15. M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).
    [CrossRef]
  16. V. G. Arkhipkin and S. A. Myslivets, “Effect of electromagnetically induced transparency on the spectrum of defect modes in a one dimensional photonic crystal,” Quantum Electron. 39, 157-162 (2009).
    [CrossRef]
  17. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef] [PubMed]
  18. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [CrossRef] [PubMed]
  19. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [CrossRef] [PubMed]
  20. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
    [CrossRef] [PubMed]
  21. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express 15, 3156-3168(2007).
    [CrossRef] [PubMed]
  22. D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express 16, 5585-5595(2008).
    [CrossRef] [PubMed]

2010

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

2009

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

V. G. Arkhipkin and S. A. Myslivets, “Effect of electromagnetically induced transparency on the spectrum of defect modes in a one dimensional photonic crystal,” Quantum Electron. 39, 157-162 (2009).
[CrossRef]

A. Vukics, W. Niedenzu, and H. Ritsch, “Cavity nonlinear optics with few photons and ultracold quantum particles,” Phys. Rev. A 79, 013828 (2009).
[CrossRef]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009).
[CrossRef]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

T. Xu, M. S. Wheeler, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “The influence of material absorption on the quality factor of photonic crystal cavities,” Opt. Express 17, 8343-8348 (2009).
[CrossRef] [PubMed]

2008

D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express 16, 5585-5595(2008).
[CrossRef] [PubMed]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084-12089 (2008).
[CrossRef] [PubMed]

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonance in photonic crystal slabs,” Appl. Phys. Lett. 93, 261110 (2008).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

2007

2005

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).
[CrossRef]

2004

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

2000

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

1998

1997

G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
[CrossRef]

Aitchison, J. S.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Arkhipkin, V. G.

V. G. Arkhipkin and S. A. Myslivets, “Effect of electromagnetically induced transparency on the spectrum of defect modes in a one dimensional photonic crystal,” Quantum Electron. 39, 157-162 (2009).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Burkett, W. H.

Danzmann, K.

G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
[CrossRef]

David, Y.

De La Rue, R. M.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Dotan, I. E.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Economou, E. N.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295-297 (1998).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Gerken, M.

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonance in photonic crystal slabs,” Appl. Phys. Lett. 93, 261110 (2008).
[CrossRef]

Gerthsen, D.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Gibbs, H. M.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Goldring, D.

Goorskey, D. J.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

Hendrickson, J.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Ho, W. D.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009).
[CrossRef]

Hsiao, Y. H.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009).
[CrossRef]

Hu, D. Z.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).
[CrossRef]

Johnson, N. P.

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Khankhoje, U.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Khitrova, G.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Koschny, Th.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Lee, P. T.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009).
[CrossRef]

Lemmer, U.

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonance in photonic crystal slabs,” Appl. Phys. Lett. 93, 261110 (2008).
[CrossRef]

Levy, U.

Lidorikis, E.

M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).
[CrossRef]

Litvinov, D.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Lu, T. W.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009).
[CrossRef]

Lukin, M. D.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Mendlovic, D.

Mojahedi, M.

Muller, G.

G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
[CrossRef]

Muller, M.

G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
[CrossRef]

Myslivets, S. A.

V. G. Arkhipkin and S. A. Myslivets, “Effect of electromagnetically induced transparency on the spectrum of defect modes in a one dimensional photonic crystal,” Quantum Electron. 39, 157-162 (2009).
[CrossRef]

Nazirizadeh, Y.

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonance in photonic crystal slabs,” Appl. Phys. Lett. 93, 261110 (2008).
[CrossRef]

Niedenzu, W.

A. Vukics, W. Niedenzu, and H. Ritsch, “Cavity nonlinear optics with few photons and ultracold quantum particles,” Phys. Rev. A 79, 013828 (2009).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Oksman, M.

Olitzky, J. D.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Richards, B. C.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Rinkleff, R. H.

G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
[CrossRef]

Ritsch, H.

A. Vukics, W. Niedenzu, and H. Ritsch, “Cavity nonlinear optics with few photons and ultracold quantum particles,” Phys. Rev. A 79, 013828 (2009).
[CrossRef]

Rubin, I.

Ruda, H. E.

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Schaadt, D. M.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Scherer, A.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Scully, M. O.

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Soljacic, M.

M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Sorel, M.

Soukoulis, C. M.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Sweet, J.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Tassin, P.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Tsukernik, A.

Velichansky, V. L.

Vukics, A.

A. Vukics, W. Niedenzu, and H. Ritsch, “Cavity nonlinear optics with few photons and ultracold quantum particles,” Phys. Rev. A 79, 013828 (2009).
[CrossRef]

Wang, H.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Wegener, M.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Wheeler, M. S.

Wicht, A.

G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
[CrossRef]

Xiao, M.

Xu, T.

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zain, A. R. M.

Zhang, L.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110(2009).
[CrossRef]

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonance in photonic crystal slabs,” Appl. Phys. Lett. 93, 261110 (2008).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Nat. Mater.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598 (1999).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photon. Nanostruct. Fundam. Appl.

J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, D. Z. Hu, D. M. Schaadt, M. Wegener, U. Khankhoje, and A. Scherer, “GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor,” Photon. Nanostruct. Fundam. Appl. 8, 1-6(2010).
[CrossRef]

Phys. Rev. A

A. Vukics, W. Niedenzu, and H. Ritsch, “Cavity nonlinear optics with few photons and ultracold quantum particles,” Phys. Rev. A 79, 013828 (2009).
[CrossRef]

G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A 56, 2385-2389 (1997).
[CrossRef]

Phys. Rev. E

M. Soljacic, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E 71, 026602 (2005).
[CrossRef]

Phys. Rev. Lett.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Quantum Electron.

V. G. Arkhipkin and S. A. Myslivets, “Effect of electromagnetically induced transparency on the spectrum of defect modes in a one dimensional photonic crystal,” Quantum Electron. 39, 157-162 (2009).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of (a) combined PC-EIT structure consisting of 1D PC cavity and EIT-PPM structure and (b) front view of the EIT-PPM structure. Blue blocks, yellow strips, and the thin orange sheet denote PVC, metal, and FR4, respectively. In between the blue PVC blocks or PPM structure are spaces filled with air.

Fig. 2
Fig. 2

Transmissions for the 1D PC cavity, EIT- PPM structure, and combined PC-EIT structure: (a) simulation, (b)  experiment.

Fig. 3
Fig. 3

Electric energy density distributions at 6.75 GHz in (a) 1D PC cavity, (b) EIT-PPM structure, and (c) the combined PC-EIT structure.

Metrics