Abstract

We show that light trapping and releasing can be switched by a mechanic tuning effect in metamaterial waveguides. The transition mechanism between the trapping and releasing states relies on the synergetic effect of the local Bragg reflection and cavity resonance in the waveguides. As a proof-of-concept demonstration, a heterostructured metamaterial waveguide comprised of dielectric claddings and a tapered metamaterial core formed by arrays of metal slats is analytically and numerically investigated. The spatial separation of the trapped light with various frequencies and the transition between the trapping and releasing states can be predicted by a “rainbow equation.” The proposed light trapping and releasing scheme based on the mechanical implementation of waveguide geometrical parameters can be exploited to develop opto-mechanical devices for slow light technology.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
    [CrossRef]
  4. J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26, 78–84 (2009).
    [CrossRef]
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  7. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
    [CrossRef] [PubMed]
  8. J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
    [CrossRef] [PubMed]
  9. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006).
    [CrossRef] [PubMed]
  10. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2008), pp. 3–59.
  11. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008).
    [CrossRef] [PubMed]
  12. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett. 102, 056801 (2009).
    [CrossRef] [PubMed]
  13. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [CrossRef] [PubMed]
  14. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [CrossRef] [PubMed]
  15. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef] [PubMed]
  16. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
    [CrossRef]
  17. A. C. Peacock and N. G. R. Broderick, “Guided modes in channel waveguides with a negative index of refraction,” Opt. Express 11, 2502–2510 (2003).
    [CrossRef] [PubMed]
  18. K. L. Tsakmakidis, O. Hess, and A. D. Boardman, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007).
    [CrossRef]
  19. G. N. Nielson, M. J. Shaw, O. B. Spahn, et al., “High-speed, sub-pull-in voltage MEMS switching,” SANDIA Report (SAND, 2008), pp. 17–21.
  20. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995),pp. 38–51.
  21. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  22. A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
    [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, 2000), pp. 109–174.
  24. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
    [CrossRef]
  25. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
    [CrossRef]
  26. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
    [CrossRef] [PubMed]
  27. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick cavity,” Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef] [PubMed]
  28. A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
    [CrossRef] [PubMed]
  29. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45–52 (2007).
    [CrossRef]
  30. J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
    [CrossRef]

2009 (5)

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26, 78–84 (2009).
[CrossRef]

2008 (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008).
[CrossRef] [PubMed]

2007 (4)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45–52 (2007).
[CrossRef]

J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
[CrossRef]

K. L. Tsakmakidis, O. Hess, and A. D. Boardman, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[CrossRef]

2006 (3)

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14, 13021–13029 (2006).
[CrossRef] [PubMed]

2005 (1)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

2004 (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
[CrossRef]

A. C. Peacock and N. G. R. Broderick, “Guided modes in channel waveguides with a negative index of refraction,” Opt. Express 11, 2502–2510 (2003).
[CrossRef] [PubMed]

2002 (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1996 (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Akimov, A. V.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

al., et

G. N. Nielson, M. J. Shaw, O. B. Spahn, et al., “High-speed, sub-pull-in voltage MEMS switching,” SANDIA Report (SAND, 2008), pp. 17–21.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Barbara, A.

A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
[CrossRef]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008).
[CrossRef] [PubMed]

Bayer, M.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Boardman, A. D.

K. L. Tsakmakidis, O. Hess, and A. D. Boardman, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007).
[CrossRef]

Broderick, N. G. R.

Bustarret, E.

A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
[CrossRef]

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Chai, L.

Chen, Y.

Christensen, J.

J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
[CrossRef]

Cummer, S. A.

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45–52 (2007).
[CrossRef]

de Leon-Perez, F.

J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
[CrossRef]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008).
[CrossRef] [PubMed]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Fan, S.

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
[CrossRef]

Ferrari, J. A.

Fournier, T.

A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
[CrossRef]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008).
[CrossRef] [PubMed]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Golubev, V. G.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, 2000), pp. 109–174.

Hess, O.

K. L. Tsakmakidis, O. Hess, and A. D. Boardman, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Hu, M.

Hugonin, J. P.

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995),pp. 38–51.

Johnson, S. G.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Kaplan, S. F.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Khurgin, J. B.

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2008), pp. 3–59.

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Lalanne, P.

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Li, Y.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

López-Rios, T.

A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
[CrossRef]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Mazoyer, S.

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995),pp. 38–51.

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Nielson, G. N.

G. N. Nielson, M. J. Shaw, O. B. Spahn, et al., “High-speed, sub-pull-in voltage MEMS switching,” SANDIA Report (SAND, 2008), pp. 17–21.

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Peacock, A. C.

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Perciante, C. D.

Pevtsov, A. B.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Quémerais, P.

A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
[CrossRef]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Schurig, D.

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45–52 (2007).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[CrossRef]

Shaw, M. J.

G. N. Nielson, M. J. Shaw, O. B. Spahn, et al., “High-speed, sub-pull-in voltage MEMS switching,” SANDIA Report (SAND, 2008), pp. 17–21.

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Shen, J.-T.

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef] [PubMed]

Shin, J.

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef] [PubMed]

Singh, R.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Song, Z.

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Spahn, O. B.

G. N. Nielson, M. J. Shaw, O. B. Spahn, et al., “High-speed, sub-pull-in voltage MEMS switching,” SANDIA Report (SAND, 2008), pp. 17–21.

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, 2000), pp. 109–174.

Tamura, S.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Tanaka, Y.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, O. Hess, and A. D. Boardman, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007).
[CrossRef]

Tucker, R. S.

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2008), pp. 3–59.

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Wang, B.

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

Wang, C.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995),pp. 38–51.

Xing, Q.

Yakovlev, D. R.

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zhang, W.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zhang, Z.

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, and T. Fournier, “Electromagnetic resonances of sub-wavelength rectangular metallic gratings,” Eur. Phys. J. D 23, 143–154 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photon. (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007).
[CrossRef]

Nature (London) (1)

K. L. Tsakmakidis, O. Hess, and A. D. Boardman, “‘Trapped rainbow’ storage of light in metamaterials,” Nature (London) 450, 397–401 (2007).
[CrossRef]

Nature Phys. (1)

J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Collimation of sound assisted by acoustic surface waves,” Nature Phys. 3, 851–852(2007).
[CrossRef]

New J. Phys. (1)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45–52 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Phys. Rev. E (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Phys. Rev. Lett. (13)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3 nm-thick cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

A. V. Akimov, Y. Tanaka, A. B. Pevtsov, S. F. Kaplan, V. G. Golubev, S. Tamura, D. R. Yakovlev, and M. Bayer, “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Phys. Rev. Lett. 101, 033902 (2008).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803(2008).
[CrossRef] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (4)

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2008), pp. 3–59.

G. N. Nielson, M. J. Shaw, O. B. Spahn, et al., “High-speed, sub-pull-in voltage MEMS switching,” SANDIA Report (SAND, 2008), pp. 17–21.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995),pp. 38–51.

A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method (Artech House, 2000), pp. 109–174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the heterostructured waveguide consists of dielectric claddings and a metamaterial core formed by arrays of metal slats (yellow).

Fig. 2
Fig. 2

(a) Dispersion relation in the first Brillouin zone of the fundamental mode supported by the metal slat waveguide with geometry parameters, p d = 7 and L d = 45 . (b) Light trapping governed by the local Bragg condition and cavity resonance. The parallel arrows (green and black arrows in color online) represent forward and backward guided-waves along the z axis; the evanescent fields along the x direction are represented by dashed curves (green and black dashed curves in color online). The cavity resonances (light trapping) inside the metal slits are indicated by vertical arrows (red arrows in color online).

Fig. 3
Fig. 3

(a) Rainbow phenomenon of the waveguide. (b) Trapping light at different critical waveguide thicknesses. The solid curve is derived from Eq. (3) as an approximation. The dotted curve considers the higher-order diffraction waves for comparison with the approximation. The geometry parameters are chosen as p = 50 μm , d = 20 μm , the length of the waveguide along the propagation axis is 3000 μm including 60 metal slats, and the slat thickness L increases from 5 to 300 μm by a step of Δ = 5 μm for each period. (c)–(e) The frequencies of trapping light at f = 0.9 , 0.7, and 0.6 THz correspond to the critical thicknesses L = 140 , 990, and 225 μm , respectively. The field distributions are represented by the magnetic field of light.

Fig. 4
Fig. 4

(a) Variation of trapping light at different waveguide thicknesses through compressing of the tapered region. The waveguide structure is the same as that in Fig. 3. The periodicity and slit width are changed from p = 50 μm , d = 20 μm (red curve) to p = 35 μm , d = 5 μm (green dotted curve) due to compression. (b) Variation of the dispersion diagram through the compression on a section of uniform metal slat array. The metal slat array has a constant thickness L = 225 μm with same periodicity and slit width in (a). The red and green dashed lines represent the slope of the dispersion curves. The transition between light trapping and releasing is reversible as indicated by the dashed arrows. (c) The tapered section for trapping light (the red solid box) is followed by a uniform section for extracting light. The elastic property and compression are added to the uniform section as well as the thick slats of the tapered section (green dashed box). (d) and (e) Transition between light trapping and releasing demonstrated by FDTD simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = ε 2 d p sin c 2 ( β n d 2 ) τ ( 2 , n ) = ε 1 k 1 [ A sin ( k 1 L 2 ) B cos ( k 1 L 2 ) A cos ( k 1 L 2 ) + B sin ( k 1 L 2 ) ] ,
n = ε 3 d p sin c 2 ( β n d 2 ) τ ( 3 , n ) = ε 1 k 1 [ A sin ( k 1 L 2 ) + B cos ( k 1 L 2 ) A cos ( k 1 L 2 ) B sin ( k 1 L 2 ) ] ,
[ β Bragg 2 ( ω c ) 2 ] 1 2 sin c 2 ( β Bragg d 2 ) = p d cot ( ω 2 c L ) ω c ,
[ β Bragg 2 ( ω c ) 2 ] 1 2 sin c 2 ( β Bragg d 2 ) = p d cot ( ω α 2 c z ) ω c .

Metrics