Abstract

The resolution of a camera system determines the fidelity of visual features in captured images. Higher resolution implies greater fidelity and, thus, greater accuracy when performing automated vision tasks, such as object detection, recognition, and tracking. However, the resolution of any camera is fundamentally limited by geometric aberrations. In the past, it has generally been accepted that the resolution of lenses with geometric aberrations cannot be increased beyond a certain threshold. We derive an analytic scaling law showing that, for lenses with spherical aberrations, resolution can be increased beyond the aberration limit by applying a postcapture deblurring step. We then show that resolution can be further increased when image priors are introduced. Based on our analysis, we advocate for computational camera designs consisting of a spherical lens shared by several small planar sensors. We show example images captured with a proof-of-concept gigapixel camera, demonstrating that high resolution can be achieved with a compact form factor and low complexity. We conclude with an analysis on the trade-off between performance and complexity for computational imaging systems with spherical lenses.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription