Abstract

Single-exposure superresolved interferometric microscopy (SESRIM) by RGB multiplexing has recently been proposed as a way to achieve one-dimensional superresolved imaging in digital holographic microscopy by a single-color CCD snapshot [Opt. Lett. 36, 885 (2011)]. Here we provide the mathematical basis for the operating principle of SESRIM, while we also present a different experimental configuration where the color CCD camera is replaced by a monochrome (B&W) CCD camera. To maintain the single-exposure working principle, the object field of view (FOV) is restricted and the holographic recording is based on image-plane wavelength-dispersion spatial multiplexing to separately record the three bandpass images. Moreover, a two-dimensional extension is presented by considering two options: time multiplexing and selective angular multiplexing. And as an additional implementation, the FOV restriction is eliminated by varying the angle between the three reference beams in the interferometric recording. Experimental results are reported for all of the above-mentioned cases.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beitrag zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418(1873).
    [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).
  3. Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
    [CrossRef] [PubMed]
  4. Z. Zalevsky and D. Mendlovic, Optical Super Resolution(Springer, 2002).
  5. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223(1998).
    [CrossRef]
  6. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  7. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]
  8. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
    [CrossRef] [PubMed]
  9. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946(2003).
    [CrossRef] [PubMed]
  10. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef] [PubMed]
  11. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005).
    [CrossRef] [PubMed]
  12. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [CrossRef] [PubMed]
  13. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
    [CrossRef] [PubMed]
  14. T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
    [CrossRef] [PubMed]
  15. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003).
    [CrossRef] [PubMed]
  16. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
    [CrossRef] [PubMed]
  17. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
    [CrossRef] [PubMed]
  18. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
    [CrossRef] [PubMed]
  19. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
    [CrossRef] [PubMed]
  20. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
    [CrossRef]
  21. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy—approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663 (2007).
    [CrossRef] [PubMed]
  22. J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 827–833 (2007).
    [CrossRef] [PubMed]
  23. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007).
    [CrossRef] [PubMed]
  24. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
    [CrossRef]
  25. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
    [CrossRef]
  26. A. Neumann, Y. Kuznetsova, and S. R. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16, 6785–6793 (2008).
    [CrossRef] [PubMed]
  27. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
    [CrossRef]
  28. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
    [CrossRef] [PubMed]
  29. J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010).
    [CrossRef]
  30. V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
    [CrossRef] [PubMed]
  31. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
    [CrossRef] [PubMed]
  32. C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011).
    [CrossRef] [PubMed]
  33. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
    [CrossRef] [PubMed]
  34. A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by RGB-multiplexing,” Opt. Lett. 36, 885–887 (2011).
    [CrossRef] [PubMed]
  35. H. Li, L. Zhong, Z. Ma, and X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272(2011).
    [CrossRef]

2011 (4)

2010 (4)

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[CrossRef] [PubMed]

Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[CrossRef] [PubMed]

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010).
[CrossRef]

V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

2007 (4)

2006 (6)

2005 (3)

2004 (1)

2003 (2)

2002 (1)

Z. Zalevsky and D. Mendlovic, Optical Super Resolution(Springer, 2002).

1999 (3)

1998 (1)

1974 (1)

1873 (1)

E. Abbe, “Beitrag zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418(1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beitrag zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418(1873).
[CrossRef]

Alexandrov, S. A.

Alfieri, D.

Babovsky, H.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010).
[CrossRef]

Bingham, P. R.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).

Brooker, G.

Brueck, S. R.

Brueck, S. R. J.

Bühl, J.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010).
[CrossRef]

Calabuig, A.

Choi, W.

Choi, Y.

Colomb, T.

Coppola, G.

Cotte, Y.

Cuche, E.

Dasari, R. R.

De Nicola, S.

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Depeursinge, C.

Depeursinge, Ch.

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
[CrossRef]

Dürr, F.

Emery, Y.

Fang-Yen, C.

Feld, M. S.

Ferraro, P.

Ferreira, C.

Finizio, A.

Garcia, J.

García, J.

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[CrossRef] [PubMed]

García-Martínez, P.

Granero, L.

Grilli, S.

Gutzler, T.

Hillman, T. R.

Indebetouw, G.

Javidi, B.

Joannes, L.

Katz, J.

Kiessling, A.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010).
[CrossRef]

Kim, M.

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Kowarschik, R.

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010).
[CrossRef]

Kuznetsova, Y.

Legros, J.-C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
[CrossRef]

Li, H.

H. Li, L. Zhong, Z. Ma, and X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272(2011).
[CrossRef]

Limberger, H. G.

Lu, X.

H. Li, L. Zhong, Z. Ma, and X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272(2011).
[CrossRef]

Ma, J.

Ma, Z.

H. Li, L. Zhong, Z. Ma, and X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272(2011).
[CrossRef]

Magistretti, P. J.

Magro, C.

Malkiel, E.

Marquet, P.

Mendlovic, D.

Z. Zalevsky and D. Mendlovic, Optical Super Resolution(Springer, 2002).

Mico, V.

A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by RGB-multiplexing,” Opt. Lett. 36, 885–887 (2011).
[CrossRef] [PubMed]

V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[CrossRef] [PubMed]

Micó, V.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Neumann, A.

Osten, W.

Pavillon, N.

Pedrini, G.

Pierattini, G.

Price, J. R.

Rappaz, B.

Rosen, J.

Salathé, R. P.

Sampson, D. D.

Sato, T.

Schwarz, C. J.

Shaffer, E.

Sheng, J.

Situ, G.

Striano, V.

Sung, Y.

Tada, Y.

Thomas, C. E.

Toy, M. F.

Ueda, M.

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).

Yamagishi, G.

Yamaguchi, I.

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Yuan, C.

Zalevsky, Z.

A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by RGB-multiplexing,” Opt. Lett. 36, 885–887 (2011).
[CrossRef] [PubMed]

V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[CrossRef] [PubMed]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[CrossRef] [PubMed]

Z. Zalevsky and D. Mendlovic, Optical Super Resolution(Springer, 2002).

Zhang, T.

Zhong, L.

H. Li, L. Zhong, Z. Ma, and X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272(2011).
[CrossRef]

Appl. Opt. (11)

F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946(2003).
[CrossRef] [PubMed]

T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
[CrossRef] [PubMed]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 827–833 (2007).
[CrossRef] [PubMed]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007).
[CrossRef] [PubMed]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[CrossRef] [PubMed]

C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011).
[CrossRef] [PubMed]

Arch. Mikrosk. Anat. (1)

E. Abbe, “Beitrag zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418(1873).
[CrossRef]

J. Biomed. Opt. (2)

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (4)

H. Li, L. Zhong, Z. Ma, and X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272(2011).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[CrossRef]

J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010).
[CrossRef]

Opt. Express (7)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).

Z. Zalevsky and D. Mendlovic, Optical Super Resolution(Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Upper view of the experimental setup for SESRIM by image-plane wavelength-dispersion multiplexing: M, mirror; NDF, neutral density filter; and BS, beamsplitter.

Fig. 2
Fig. 2

SA generation and expanded cut-off frequency definition by SESRIM.

Fig. 3
Fig. 3

SA generation and expanded cut-off frequency for 2D SESRIM extension using (a) time multiplexing and (b) selective angular multiplexing.

Fig. 4
Fig. 4

Experimental results for SESRIM in the horizontal direction: (a) recorded hologram; (b) Fourier transform of (a); (c) recovered complex amplitude distribution image containing information of the three transmitted bandpass images; (d)–(e) magnification of the central part of the bandpass images corresponding with the green and red lasers, respectively; and (f)–(g) the same magnified area for the blue laser bandpass image showing the misfocused and refocused images, respectively.

Fig. 5
Fig. 5

Experimental results for SESRIM in the horizontal direction: (a), (b) comparison between conventional and expanded apertures, respectively; (c), (d) conventional (low- resolution) and superresolved images, respectively; and (e) schematic composition between the generated SA (case b) and the theoretical values of spatial frequencies expressed as a ratio between the NA (or SNA) and the R wavelength.

Fig. 6
Fig. 6

Experimental results for SESRIM in the vertical direction: (a) recorded hologram, (b) Fourier transform of (a); (c) recovered complex amplitude distribution image containing information of the three transmitted bandpass images; (d), (e) magnified and rotated image of the central part of the bandpass images corresponding with the green and red lasers, respectively; and (f), (g) the same magnified and rotated area for the blue laser bandpass image showing the misfocused and refocused images, respectively.

Fig. 7
Fig. 7

Experimental results for SESRIM in the vertical direction: (a)–(b) comparison between conventional and expanded apertures, respectively, and (c)–(d) conventional (low- resolution) and superresolved images, respectively.

Fig. 8
Fig. 8

2D extension of SESRIM considering time multiplexing: (a) generated SA and (b) 2D superresolved image.

Fig. 9
Fig. 9

Experimental arrangement of SESRIM with selective angular multiplexing: (a) full experimental implementation with ray tracing and (b) detail of the selective angular illumination procedure [picture corresponding with the white rectangle in (a)].

Fig. 10
Fig. 10

Experimental results for 2D SESRIM using selective angular multiplexing: (a) recorded hologram, (b) Fourier transform of (a), (c) recovered complex amplitude distribution image containing information of the three transmitted bandpass images, and (d) conventional (low-resolution) image provided by the red laser bandpass image.

Fig. 11
Fig. 11

2D extension of SESRIM considering selective angular multiplexing: (a) generated SA and (b) 2D superresolved image.

Fig. 12
Fig. 12

Experimental results for 2D SESRIM by avoiding the FOV limitation: (a), (b) the recorded hologram and its Fourier transform, respectively, where the DC term has been blocked down to enhance image contrast.

Fig. 13
Fig. 13

SESRIM without considering FOV restriction: (a) low-resolution conventional image, (b) generated SA, and (c) 2D superresolved image. Insets in (a) and (c), USAF central part magnified for clarity.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ρ = k λ NA ν = 1 ρ = NA k λ ,
ρ m = ρ R λ m λ R ν m = λ R λ m ν R ,
ν SA m = ν off-axis m + ν m = sin θ m λ m + λ R λ m ν R .
ν SA m = SNA m λ R SNA m = λ R λ m ( sin θ m + NA k ) .
ρ m = λ R SNA m ρ m = λ m sin θ m + NA k .
U ( x F ) = C exp [ j k 2 f ( 1 d f ) x F 2 ] O ( x ) rect ( x L ) exp ( j 2 π α x ) exp ( j 2 π λ f x x F ) d x = C exp [ j k 2 f ( 1 d f ) x F 2 ] [ O ˜ ( x F λ f α ) L sinc ( L x F λ f ) ] ,
x F 0 2 λ R f u x F 0 2 x F 0 2 λ R f u x F 0 2 λ R f , x F 0 2 λ G f β G λ G f u x F 0 2 λ G f β G x F 0 2 λ G f β G u x F 0 2 λ G f β G , x F 0 2 λ V f β V λ V f u x F 0 2 λ V f β V x F 0 2 λ V f β V u x F 0 2 λ V f β V ,
ν R = ± x F 0 2 λ R f and ν m = ± λ R λ m ν R = ± λ R λ m x F 0 2 λ R f = ± x F 0 2 λ m f .
t ( x F ) = 1 2 + m 4 exp ( j 2 π u 0 x F ) + m 4 exp ( j 2 π u 0 x F ) ,
U ( x F ) = C exp [ j k 2 f ( 1 d f ) x F 2 ] [ O ˜ ( x F λ f α ) L sinc ( L x F λ f ) ] rect ( x F x F 0 ) exp ( j 2 π u 0 x F ) ,
U ( x i ) = D exp [ j k 2 ( d f ) x i 2 ] { FT [ O ˜ ( x F λ f α ) ] FT [ L sinc ( L x F λ f ) ] } FT [ rect ( x F x F 0 ) ] FT [ exp ( j 2 π u 0 x F ) ] ,
FT [ O ˜ ( x F λ f α ) ] = λ f O ( x i M ) · exp ( j 2 π x i M α ) , FT [ L sinc ( L x F λ f ) ] = λ f · rect ( x i M L ) , FT [ rect ( x F x F 0 ) ] = x F 0 · sinc ( x F 0 x i λ f M ) , FT [ exp ( j 2 π u 0 x F ) ] = λ f · δ ( x i M λ f u 0 ) ,
U ( x i ) = D exp [ j k 2 ( d f ) x i 2 ] { O ( x i M ) exp ( j 2 π x i M α ) rect ( x i M L ) } sinc ( x F 0 x i λ f M ) δ ( x i M λ f u 0 ) ,
λ V f u 0 + 1 2 L M + λ V f M x F 0 λ G f u 0 1 2 L M λ G f M x F 0 u 0 M x F 0 ( λ G + λ V λ G λ V ) + M L f ( λ G λ V ) .
λ G f u 0 + 1 2 L M + λ G f M x F 0 λ R f u 0 1 2 L M λ R f M x F 0 u 0 M x F 0 ( λ R + λ G λ R λ G ) + M L f ( λ R λ G ) .
R ( x i ) = exp ( j 2 π sin φ λ x i ) · exp [ j k 2 ( d f ) x i 2 ] ,
I ( x i ) = | U ( x i ) + R ( x i ) | 2 = | U ( x i ) | 2 + | R ( x i ) | 2 + U ( x i ) R * ( x i ) + U * ( x i ) R ( x i ) ,

Metrics