J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells using surface integral equations and the multilevel fast multipole algorithm,” J. Biomed. Opt. 15, 045004 (2010).

[PubMed]

Ö. Ergül and L. Gürel, “An efficient parallel implementation of the multilevel fast multipole algorithm for rigorous solutions of large-scale scattering problems,” in International Symposium on Electromagnetic Theory (IEEE, 2010), pp. 616–619.

[CrossRef]

Ö. Ergül and L. Gürel, “Advanced partitioning and communication strategies for the efficient parallelization of the multilevel fast multipole algorithm,” in IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2010), pp. 1–4.

Ö. Ergül, “Accurate and efficient solutions of electromagnetics problems with the multilevel fast multipole algorithm,” Ph.D thesis (Bilkent University, , 2009).

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44 (2009).

[CrossRef]

J. Fostier and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750(2009).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Trans. Antennas Propag. 50, 129–138 (2008).

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345 (2008).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

P. Ylä-Oijala, “Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects,” Prog. Electromagn. Res. C 3, 19–43 (2008).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of integral-equation formulations discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?” IEEE Trans. Antennas Propag. 45, 43–58 (2003).

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493(1997).

[CrossRef]

H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells using surface integral equations and the multilevel fast multipole algorithm,” J. Biomed. Opt. 15, 045004 (2010).

[PubMed]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?” IEEE Trans. Antennas Propag. 45, 43–58 (2003).

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493(1997).

[CrossRef]

Ö. Ergül, T. Malas, and L. Gürel, “Analysis of dielectric photonic-crystal problems with MLFMA and Schur-complement preconditioners,” J. Lightwave Technol. 29, 888–897 (2011).

[CrossRef]

Ö. Ergül and L. Gürel, “Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns,” IEEE Trans. Antennas Propag. 53, 18–26 (2011).

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells using surface integral equations and the multilevel fast multipole algorithm,” J. Biomed. Opt. 15, 045004 (2010).

[PubMed]

Ö. Ergül and L. Gürel, “An efficient parallel implementation of the multilevel fast multipole algorithm for rigorous solutions of large-scale scattering problems,” in International Symposium on Electromagnetic Theory (IEEE, 2010), pp. 616–619.

[CrossRef]

Ö. Ergül and L. Gürel, “Advanced partitioning and communication strategies for the efficient parallelization of the multilevel fast multipole algorithm,” in IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2010), pp. 1–4.

Ö. Ergül, “Accurate and efficient solutions of electromagnetics problems with the multilevel fast multipole algorithm,” Ph.D thesis (Bilkent University, , 2009).

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750(2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345 (2008).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of integral-equation formulations discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

J. Fostier and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246 (2009).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

Ö. Ergül and L. Gürel, “Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns,” IEEE Trans. Antennas Propag. 53, 18–26 (2011).

Ö. Ergül, T. Malas, and L. Gürel, “Analysis of dielectric photonic-crystal problems with MLFMA and Schur-complement preconditioners,” J. Lightwave Technol. 29, 888–897 (2011).

[CrossRef]

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells using surface integral equations and the multilevel fast multipole algorithm,” J. Biomed. Opt. 15, 045004 (2010).

[PubMed]

Ö. Ergül and L. Gürel, “An efficient parallel implementation of the multilevel fast multipole algorithm for rigorous solutions of large-scale scattering problems,” in International Symposium on Electromagnetic Theory (IEEE, 2010), pp. 616–619.

[CrossRef]

Ö. Ergül and L. Gürel, “Advanced partitioning and communication strategies for the efficient parallelization of the multilevel fast multipole algorithm,” in IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2010), pp. 1–4.

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750(2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345 (2008).

[CrossRef]

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of integral-equation formulations discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493(1997).

[CrossRef]

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

J. Fostier and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246 (2009).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Trans. Antennas Propag. 50, 129–138 (2008).

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Trans. Antennas Propag. 50, 129–138 (2008).

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?” IEEE Trans. Antennas Propag. 45, 43–58 (2003).

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493(1997).

[CrossRef]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?” IEEE Trans. Antennas Propag. 45, 43–58 (2003).

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

P. Ylä-Oijala, “Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects,” Prog. Electromagn. Res. C 3, 19–43 (2008).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

L. Gürel and Ö. Ergül, “Fast and accurate solutions of integral-equation formulations discretised with tens of millions of unknowns,” Electron. Lett. 43, 499–500 (2007).

[CrossRef]

Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics,” Electron. Lett. 44, 3–5 (2008).

[CrossRef]

J. Fostier and F. Olyslager, “Full-wave electromagnetic scattering at extremely large 2-D objects,” Electron. Lett. 45, 245–246 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 1740–1750(2009).

[CrossRef]

J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Trans. Antennas Propag. 51, 21–28(2009).

Ö. Ergül and L. Gürel, “Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns,” IEEE Trans. Antennas Propag. 53, 18–26 (2011).

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for scattering by extremely large targets,” IEEE Trans. Antennas Propag. 50, 129–138 (2008).

Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems,” IEEE Trans. Antennas Propag. 56, 2335–2345 (2008).

[CrossRef]

J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag. 56, 2346–2355 (2008).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493(1997).

[CrossRef]

X.-Q. Sheng, J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it that big?” IEEE Trans. Antennas Propag. 45, 43–58 (2003).

Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells using surface integral equations and the multilevel fast multipole algorithm,” J. Biomed. Opt. 15, 045004 (2010).

[PubMed]

J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res. 105, 15–30 (2010).

[CrossRef]

P. Ylä-Oijala, “Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects,” Prog. Electromagn. Res. C 3, 19–43 (2008).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44 (2009).

[CrossRef]

H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 13, 631–644 (1992).

[CrossRef]

Ö. Ergül and L. Gürel, “An efficient parallel implementation of the multilevel fast multipole algorithm for rigorous solutions of large-scale scattering problems,” in International Symposium on Electromagnetic Theory (IEEE, 2010), pp. 616–619.

[CrossRef]

Ö. Ergül and L. Gürel, “Advanced partitioning and communication strategies for the efficient parallelization of the multilevel fast multipole algorithm,” in IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2010), pp. 1–4.

Ö. Ergül, “Accurate and efficient solutions of electromagnetics problems with the multilevel fast multipole algorithm,” Ph.D thesis (Bilkent University, , 2009).

W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics(Artech House, 2001).