Abstract

The transformation of the polarization distribution of a laser beam from linear to radial and azimuthal by means of a subwavelength binary corrugation etched in a high-index substrate faces fabrication difficulties and an inherent contradiction preventing the achievement of both conditions of 100% transmission and of π phase difference between polarization components. The contradiction is solved by resorting to an easily fabricable high-index corrugation on a low-index substrate where a larger period gives rise to grating-mode reflection/transmission phases that permit the fulfillment of both conditions with a depth-minimized corrugation. From the principle of the solution, a targeted numerical search gives the complete set of the corresponding shallow structures, achieving polarization rotation in a fitting analytical form versus normalized variables.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  2. D. Biss and T. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925 (2003).
    [CrossRef]
  3. T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122–124 (2008).
    [CrossRef]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [CrossRef]
  5. M. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826(2007).
    [CrossRef]
  6. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
    [CrossRef]
  7. P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.
  8. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef]
  9. G. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33, 2782–2784 (2008).
    [CrossRef]
  10. U. Levy, C. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720 (2004).
    [CrossRef]
  11. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
    [CrossRef]
  12. S. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
    [CrossRef]
  13. A. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
    [CrossRef]
  14. T. Clausnitzer, T. Kämpfe, E. B. Kley, A. Tünnermann, U. Peschel, A. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13, 10448–10456(2005).
    [CrossRef]
  15. T. Kämpfe and O. Parriaux, “Parameter-tolerant binary gratings,” J. Opt. Soc. Am. A 27, 2660–2669 (2010).
    [CrossRef]
  16. MC Grating by N. Lyndin, http://www.mcgrating.com.

2010 (1)

2008 (3)

T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122–124 (2008).
[CrossRef]

G. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33, 2782–2784 (2008).
[CrossRef]

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

2007 (3)

2005 (2)

2004 (1)

2003 (2)

D. Biss and T. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

1996 (2)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[CrossRef]

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
[CrossRef]

1995 (1)

S. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
[CrossRef]

Ahmed, M.

Biss, D.

Brown, T.

Chou, S.

S. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
[CrossRef]

Clausnitzer, T.

Deng, W.

S. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Fainman, Y.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Graf, T.

Heckenberg, N.

Jackel, S.

Kämpfe, T.

Kley, E. B.

Lai, K.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

Lai, W.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

Lalanne, P.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[CrossRef]

Lemercier-Lalanne, D.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[CrossRef]

Lerman, G.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Levy, U.

Lim, Y.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

Lumer, Y.

Machavariani, G.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Meir, A.

Moshe, I.

Nieminen, T.

Pang, L.

Parriaux, O.

Peschel, U.

Phua, P.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

Pommier, J.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Rubinsztein-Dunlop, H.

Schadt, M.

Schulz, J.

Stalder, M.

Tan, B.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

Tan, H.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

Tishchenko, A.

Tsai, C.

Tünnermann, A.

Voss, A.

Wu, R.

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

S. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
[CrossRef]

J. Mod. Opt. (1)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

A. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Other (2)

P. Phua, W. Lai, Y. Lim, B. Tan, R. Wu, K. Lai, and H. Tan, “High power radial polarization conversion using photonic crystal segmented half-wave-plate,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMO4.

MC Grating by N. Lyndin, http://www.mcgrating.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics