Abstract

The ability to improve the transmission and intensity profiles in absorbance-modulation optical lithography (AMOL) [J. Opt. Soc. Am. A 23, 2290 (2006) and Phys. Rev. Lett. 98, 043905 (2007)] through the introduction of a plasmonic metal layer is investigated. In this part of the work, a plasmonic layer is placed between the absorbance-modulation layer and the photoresist layer. Transmission through this layer is possible due to the ability of thin plasmonic layers to act as near-field analogues of negative refraction materials. The superlens performance is best with a thin layer of 1020nm, although this causes a full width at half-maximum increase of 50%. The introduction of the plasmonic layers allows dichroic filtering of the two wavelengths, with a difference of a factor of 10 in the transmitted intensity ratio, reducing undesirable exposure of the resist. The presented work demonstrates that a plasmonic layer can be interfaced with an AMOL system, but that further optimization and material development are needed to allow substantial performance improvements.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23, 2290–2294 (2006).
    [CrossRef]
  2. R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
    [CrossRef] [PubMed]
  3. J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance modulation optical lithography. I. Plasmonic reflector layers,” J. Opt. Soc. Am. A 28, 2209–2217 (2011).
    [CrossRef]
  4. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  6. M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys. Condens. Matter 18, L315–L321 (2006).
    [CrossRef]
  7. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
    [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
    [CrossRef] [PubMed]
  9. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134(2005).
    [CrossRef] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  11. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
    [CrossRef]
  12. Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
    [CrossRef]
  13. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
    [CrossRef]
  14. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,” J. Opt. Soc. Am. A 25, 911–918 (2008).
    [CrossRef]
  15. M. Scholer and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A 11, 105503 (2009).
    [CrossRef]
  16. M. Scholer and R. J. Blaikie, “Resonant surface roughness interactions in planar superlenses,” Microelectron. Eng. 87, 887–889(2010).
    [CrossRef]
  17. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

M. Scholer and R. J. Blaikie, “Resonant surface roughness interactions in planar superlenses,” Microelectron. Eng. 87, 887–889(2010).
[CrossRef]

2009 (2)

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

M. Scholer and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A 11, 105503 (2009).
[CrossRef]

2008 (1)

2007 (1)

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

2006 (2)

R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23, 2290–2294 (2006).
[CrossRef]

M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys. Condens. Matter 18, L315–L321 (2006).
[CrossRef]

2005 (2)

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134(2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

2003 (1)

Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

2001 (2)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Andrew, T. L.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

Arnold, M. D.

Blaikie, R. J.

Boltasseva, A.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Bones, P. J.

Chaturvedi, P.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Fang, N. X.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Foulkes, J. E.

Hajnal, J. V.

M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys. Condens. Matter 18, L315–L321 (2006).
[CrossRef]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Islam, M. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Logeeswaran, V. J.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Melville, D. O. S.

Menon, R.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23, 2290–2294 (2006).
[CrossRef]

Moore, C. P.

Naik, G.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

Pendry, J. B.

M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys. Condens. Matter 18, L315–L321 (2006).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Scholer, M.

M. Scholer and R. J. Blaikie, “Resonant surface roughness interactions in planar superlenses,” Microelectron. Eng. 87, 887–889(2010).
[CrossRef]

M. Scholer and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A 11, 105503 (2009).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

Shalaev, V.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

Smith, H. I.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Thomas, S. W.

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Tsai, H. Y.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Wang, S. Y.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Williams, R. S.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Wiltshire, M. C. K.

M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys. Condens. Matter 18, L315–L321 (2006).
[CrossRef]

Wu, W.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Yen, T. J.

Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Yu, Z. N.

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. N. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96, 043102 (2010).
[CrossRef]

Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003).
[CrossRef]

J. Opt. A (1)

M. Scholer and R. J. Blaikie, “Simulations of surface roughness effects in planar superlenses,” J. Opt. A 11, 105503 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. Condens. Matter (1)

M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-wavelength imaging at radio frequency,” J. Phys. Condens. Matter 18, L315–L321 (2006).
[CrossRef]

Laser Photon. Rev. (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials” Laser Photon. Rev. 4, 795–808 (2010).
[CrossRef]

Microelectron. Eng. (1)

M. Scholer and R. J. Blaikie, “Resonant surface roughness interactions in planar superlenses,” Microelectron. Eng. 87, 887–889(2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79(2001).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of sigma and mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Intensity profiles at 400 nm created in a system (A) and (C) without and (B) and (D) with a 30 nm superlens with a 10 nm spacer into a system with 100 nm gratings of (A) and (B) metal ( ε r = 4.4 18 i ) / air ( ε r = 1 ) and (C) and ( D) absorber ( ε r = 1 3 i ) / air ( ε r = 1 ) ).

Fig. 2
Fig. 2

Schematic diagram of the AMOL system with the included superlens. The superlens may include an additional spacer layer.

Fig. 3
Fig. 3

Absorbance in a 200 nm thick AML and λ 1 intensity in the resist layer for an AMOL system (A) with the resist with a matched substrate directly beneath the AML and (B) with a 30 nm superlens directly between the AML and resist with matched substrate.

Fig. 4
Fig. 4

Intensity profile for the transmission of λ 1 50 nm beneath (A) an AMOL system with matched substrate and (B) an AMOL system with 30 nm ideal superlens sandwiched between the AML and resist with matched substrate. Intensity profiles relative to I max are shown at (i) 0, (ii) 25, and (iii)  50 nm depths.

Fig. 5
Fig. 5

Absorbance in the AML and λ 1 intensity in the resist layer for an AMOL system with (A) a 10 nm spacer layer and 30 nm superlens and (B) a 10 nm spacer layer and 15 nm superlens directly between the AML and resist.

Fig. 6
Fig. 6

Intensity profile for the transmission of λ 1 50 nm beneath an AMOL system with (A) a 10 nm spacer layer and 30 nm ideal superlens and (B) a 10 nm spacer layer and 15 nm ideal superlens sandwiched between the AML and resist with matched substrate. Intensity profiles relative to I max are shown at (i) 0, (ii) 25, and (iii)  50 nm depths.

Fig. 7
Fig. 7

Effect on (A) NILS and (B) FWHM of increasing the spacer thickness for a 30 nm superlens.

Fig. 8
Fig. 8

(A) NILS and (B) FWHM measured with photoresist depth for a 60 nm ideal superlens, demonstrating a focusing effect occurring at a depth of 60 70 nm .

Fig. 9
Fig. 9

Effect of changing superlens depth on the transmission of λ 1 as measured by (A) NILS and (B) FWHM.

Fig. 10
Fig. 10

Comparison of the maximum and minimum (A) NILS and (B) FWHM between AMOL systems with and without a 15 nm ideal superlens with a 10 nm spacer layer as the incident intensity ratio λ 2 / λ 1 is varied.

Fig. 11
Fig. 11

Comparison of (A) the maximum intensities of λ 1 and λ 2 and (B) the maximum λ 2 / λ 1 ratio between an AMOL system with a matched substrate and an AMOL system with an ideal 15 nm superlens ( ε r = 2.775 0.16 i ) with a 10 nm spacer.

Fig. 12
Fig. 12

AML absorption in the best NILS case for (A) a matched substrate AMOL system and (B) an AMOL system with a 15 nm ideal superlens and a 10 nm spacer. Absorbance is represented by the imaginary part of the refractive index, κ, ranging from 0 to 2. Horizontal absorbance profiles are shown at (i) 80, (ii) 150, and (iii)  200 nm into the AML.

Fig. 13
Fig. 13

(A) NILS and (B) FWHM for λ 1 as the thickness of a silver superlens is increased (at 405 nm ).

Fig. 14
Fig. 14

Intensity profiles having the best NILS for transmission of λ 1 at 405 and 50 nm beneath an AMOL system with a 10 nm spacer and 15 nm superlens with the permittivity of silver at (A)  405 nm and (B)  365 nm , sandwiched between the AML and resist. Intensity profiles relative to I max are shown at (i) 0, (ii) 25, and (iii)  50 nm depths.

Fig. 15
Fig. 15

Comparison of the maximum intensities of (A)  λ 1 and λ 2 and (B)  λ 2 / λ 1 between an AMOL system with a matched substrate and an AMOL system with a silver-type 15 nm superlens ( λ 1 , ε r = 2.6 0.4 i ; λ 2 , ε r = 12.6 0.42 i ) and a 10 nm spacer.

Metrics