Abstract

The ability to improve the transmission and intensity profiles in absorbance-modulation optical lithography [J. Opt. Soc. Am. A 23, 2290–2294 (2006) and Phys. Rev. Lett. 98, 043905 (2007)] through the introduction of a plasmonic metal layer is investigated. In this part of the work, a plasmonic reflector layer (PRL) is placed beneath the photoresist layer. Improvement is expected due to surface plasmons being induced on the plasmonic layer and supporting the transmission of the image deeper into the imaging layer. The introduction of the plasmonic reflector improves the depth of focus markedly, with the image confinement extended up to 60nm but with a penalty of up to a 50% increase in the minimum full width at half-maximum of the intensity profile. The presented work demonstrates that a PRL can be a valuable tool for near-field lithography.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96, 248–270(2008).
    [CrossRef]
  2. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23, 2290–2294 (2006).
    [CrossRef]
  3. R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
    [CrossRef] [PubMed]
  4. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
    [CrossRef] [PubMed]
  5. J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941–2946 (2009).
    [CrossRef]
  6. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163 (2003).
    [CrossRef]
  7. R. J. Blaikie and S. J. McNab, “Simulation study of ‘perfect lenses’ for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
    [CrossRef]
  8. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
    [CrossRef]
  9. R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
    [CrossRef]
  10. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
    [CrossRef] [PubMed]
  11. COMSOL, Inc., 744 Cowper Street, Palo Alto, California 94301, www.comsol.com.
  12. J. E. Foulkes, “Absorbance modulation optical lithography: simulating the performance of a controllable absorbance mask in the near-field,” Ph.D. dissertation (University of Canterbury, Christchurch, New Zealand, 2011).
  13. C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley2007).
    [CrossRef]
  14. P. B. Johnson and R. W. Christy, “Optical-constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  15. J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses,” J. Opt. Soc. Am. A 28, 2218–2225 (2011).
    [CrossRef]

2011

J. E. Foulkes, “Absorbance modulation optical lithography: simulating the performance of a controllable absorbance mask in the near-field,” Ph.D. dissertation (University of Canterbury, Christchurch, New Zealand, 2011).

J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses,” J. Opt. Soc. Am. A 28, 2218–2225 (2011).
[CrossRef]

2009

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941–2946 (2009).
[CrossRef]

2008

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96, 248–270(2008).
[CrossRef]

2007

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
[CrossRef] [PubMed]

C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley2007).
[CrossRef]

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

2006

2004

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

2003

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163 (2003).
[CrossRef]

2002

R. J. Blaikie and S. J. McNab, “Simulation study of ‘perfect lenses’ for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[CrossRef]

1999

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical-constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Alkaisi, M. M.

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
[CrossRef]

Andrew, T. L.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

Arnold, M. D.

Blaikie, R. J.

J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses,” J. Opt. Soc. Am. A 28, 2218–2225 (2011).
[CrossRef]

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941–2946 (2009).
[CrossRef]

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
[CrossRef] [PubMed]

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

R. J. Blaikie and S. J. McNab, “Simulation study of ‘perfect lenses’ for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
[CrossRef]

Chou, S. Y.

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96, 248–270(2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
[CrossRef]

Fang, N.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163 (2003).
[CrossRef]

Foulkes, J. E.

J. E. Foulkes, “Absorbance modulation optical lithography: simulating the performance of a controllable absorbance mask in the near-field,” Ph.D. dissertation (University of Canterbury, Christchurch, New Zealand, 2011).

J. E. Foulkes and R. J. Blaikie, “Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses,” J. Opt. Soc. Am. A 28, 2218–2225 (2011).
[CrossRef]

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941–2946 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Mack, C. A.

C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley2007).
[CrossRef]

McNab, S. J.

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

R. J. Blaikie and S. J. McNab, “Simulation study of ‘perfect lenses’ for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
[CrossRef]

Melville, D. O. S.

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

Menon, R.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23, 2290–2294 (2006).
[CrossRef]

Pease, R. F.

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96, 248–270(2008).
[CrossRef]

Smith, H. I.

Thomas, S. W.

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Tsai, H. Y.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Zhang, X.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163 (2003).
[CrossRef]

Appl. Phys. Lett.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163 (2003).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562(1999).
[CrossRef]

Int. J. Nanosci.

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, and D. O. S. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941–2946 (2009).
[CrossRef]

Microelectron. Eng.

R. J. Blaikie and S. J. McNab, “Simulation study of ‘perfect lenses’ for near-field optical nanolithography,” Microelectron. Eng. 61, 97–103 (2002).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical-constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

R. Menon, H. Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Proc. IEEE

R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proc. IEEE 96, 248–270(2008).
[CrossRef]

Science

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[CrossRef] [PubMed]

Other

COMSOL, Inc., 744 Cowper Street, Palo Alto, California 94301, www.comsol.com.

J. E. Foulkes, “Absorbance modulation optical lithography: simulating the performance of a controllable absorbance mask in the near-field,” Ph.D. dissertation (University of Canterbury, Christchurch, New Zealand, 2011).

C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the AMOL process being modeled, including the PRL.

Fig. 2
Fig. 2

Demonstration of metrics (A) FWHM and (B) NILS. FWHM is measured as the profile width at half the maximum intensity. NILS is a normalized measure of the slope of the intensity profile at an arbitrary width, w.

Fig. 3
Fig. 3

Photoresist exposures for rectangular absorbance gratings (A) without and (B) with a PRL. The gratings are 50% duty cycle, 100 nm period gratings, modeled at 400 nm with 50 nm of photoresist ( n = 1.6 0.05 i , ε r = 2.5575 0.16 i ) and either a matched layer or a plasmonic layer ( ε r = 2.5575 0.16 i ), either semi-infinite. The absorbance grating has permittivity of ( ε r = 1 3 i ) and 1.

Fig. 4
Fig. 4

AMOL absorbance and λ 1 intensity in the photoresist for an AMOL system with (A) matched substrate and (B) an ideal PRL beneath a 50 nm photoresist. The best case results based on NILS are shown, which occurred at λ 2 / λ 1 intensity ratios of (A) 19 and (B) 15.

Fig. 5
Fig. 5

λ 1 intensity in the resist for an AMOL system with (A) a matched substrate and (B) an ideal PRL and normalized (to I max ) intensity waveforms at (i) 0, (ii) 25, and (iii)  50 nm beneath the AML layer.

Fig. 6
Fig. 6

Comparison of the maximum and minimum (A) NILS and (B) FWHM between an AMOL system with a matched layer behind 50 nm of photoresist and a system with 50 nm photoresist followed by a semi-infinite ideal reflecting layer. Plots show the results as the input intensity ratio is varied, producing different absorbance profiles.

Fig. 7
Fig. 7

Linewidths with depth into the photoresist from the base of the AMOL for (A) index matched substrate and (B) ideal PRL substrate, at 0.2 I max , 0.3 I max , and 0.4 I max in both pictures. I max is defined as the maximum intensity in the top intensity waveform.

Fig. 8
Fig. 8

AML absorption in the best case (A) matched substrate AMOL system and (B) system with PRL. Absorbance is represented by the imaginary refractive index, κ, ranging from 0 to 2.2 . Horizontal absorbance waveforms are shown at depths of (i) 80, (ii) 150, and (iii)  200 nm into the AML.

Fig. 9
Fig. 9

Aperture width against depth into the AML for a matched substrate and for an AMOL system with an ideal PRL after 50 nm of resist.

Fig. 10
Fig. 10

AMOL absorbance and λ 1 intensity in the photoresist for an AMOL system with the intensity ratios λ 2 / λ 1 giving the best NILS showing the fictitious cases (A) C ( λ 1 has a PRL, λ 2 matched substrate) and (B) D ( λ 1 has a matched substrate, λ 2 has a PRL).

Fig. 11
Fig. 11

Comparing the changes in (A) NILS and (B) FWHM for PRLs placed at changing depths beneath the AML. Also included for comparison is the best NILS and FWHM performance of an AMOL system with a matched layer.

Fig. 12
Fig. 12

λ 1 intensity in the resist for an AMOL system with (A) an ideal PRL at 15 nm beneath the AML and (B) a silver PRL at 50 nm beneath the AML. Normalized (to I max ) intensity waveforms are shown at (i) 0, (ii) 8, and (iii)  15 nm beneath the AML layer.

Fig. 13
Fig. 13

AMOL absorbance and λ 1 intensity in the photoresist for a silver PRL in an AMOL system separation of 50 nm .

Fig. 14
Fig. 14

Comparison of (A) NILS and (B) FWHM as the input intensity ratio is varied for an AMOL system with an ideal reflecting layer behind 50 nm of photoresist and a system with 50 nm photoresist followed by semi-infinite silver layer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NILS = w d [ ln ( I ) ] d x | x = x ( I max ± w / 2 ) ,

Metrics