Abstract

When a bright light is present in the field of view, visibility is dramatically reduced. Many studies have investigated the effect of glare on visibility considering foveal vision. However, the effects on peripheral vision have received little attention. In a previous work [J. Opt. Soc. Am. A 25, 1790 (2008)], we showed that the effect of glare on reaction time (RT) for foveal vision at mesopic adaptation depends on the stimulus spatial frequency. In this work, we extend this study to peripheral vision. We measured the RT of achromatic sinusoidal gratings as a function of contrast for a range of spatial frequency, and eccentricity, and for two glare levels, in addition to the no-glare condition. Data were fitted with Piéron’s law, following a linear relationship. We found that glare increases the slope of these lines for all conditions. These slopes seem to depend critically on eccentricity for 4cycles/degree (c/deg), but not for 1 and 2c/deg. We explain our results in terms of the contrast sensitivity (gain) of the underlying detection mechanisms.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Vos, “Disability glare: a state of the art report,” CIE J. 3, 39–53 (1984).
  2. Commission Internationale de l’Éclairage, “CIE collection on glare,” Report 146 (2002).
  3. Y. Akashi and M. Rea, “Peripheral detection while driving under a mesopic light level,” J. Illum. Eng. Soc. 31, 85–93 (2002).
  4. R. Lingard and M. Rea, “Off-axis detection at mesopic light levels in a driving context,” J. Illum. Eng. Soc. 31, 33–39 (2002).
  5. R. C. Aguirre, E. M. Colombo, and J. F. Barraza, “Effect of glare on simple reaction time,” J. Opt. Soc. Am. A 25, 1790–1798(2008).
    [CrossRef]
  6. S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555–1564(2000).
    [CrossRef] [PubMed]
  7. J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707–2719 (2003).
    [CrossRef] [PubMed]
  8. D. G. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  9. E. Colombo, L. Issolio, J. Santillán, and R. Aguirre, “What characteristics a clinical CSF system has to have?” Opt. Appl. 39, 415–428 (2008).
  10. L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal stray light,” Invest. Ophthalmol. Visual Sci. 47, 768–776 (2006).
    [CrossRef]
  11. P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
    [CrossRef] [PubMed]
  12. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef] [PubMed]
  13. G. Pérez, S. Manzanera, and P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vision 9, 1–10(2009).
    [CrossRef]
  14. F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
    [CrossRef]
  15. H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmol. Physiol. Opt. 26, 288–299(2006).
    [CrossRef]
  16. Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures (Wiley, 1987).
    [CrossRef]
  17. F. L. Van Nes and M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401–406 (1967).
    [CrossRef]
  18. J. G. Robson and N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
    [CrossRef] [PubMed]
  19. J. Thomas, “Normal and amblyopic contrast sensitivity functions in central and peripheral retinas,” Invest. Ophthalmol. Visual Sci. 17, 746–753 (1978).
  20. A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461–2466 (1993).
    [CrossRef] [PubMed]

2011 (1)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

2009 (1)

G. Pérez, S. Manzanera, and P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vision 9, 1–10(2009).
[CrossRef]

2008 (2)

E. Colombo, L. Issolio, J. Santillán, and R. Aguirre, “What characteristics a clinical CSF system has to have?” Opt. Appl. 39, 415–428 (2008).

R. C. Aguirre, E. M. Colombo, and J. F. Barraza, “Effect of glare on simple reaction time,” J. Opt. Soc. Am. A 25, 1790–1798(2008).
[CrossRef]

2006 (3)

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal stray light,” Invest. Ophthalmol. Visual Sci. 47, 768–776 (2006).
[CrossRef]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmol. Physiol. Opt. 26, 288–299(2006).
[CrossRef]

2003 (1)

J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707–2719 (2003).
[CrossRef] [PubMed]

2002 (2)

Y. Akashi and M. Rea, “Peripheral detection while driving under a mesopic light level,” J. Illum. Eng. Soc. 31, 85–93 (2002).

R. Lingard and M. Rea, “Off-axis detection at mesopic light levels in a driving context,” J. Illum. Eng. Soc. 31, 33–39 (2002).

2000 (1)

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555–1564(2000).
[CrossRef] [PubMed]

1993 (1)

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461–2466 (1993).
[CrossRef] [PubMed]

1991 (1)

D. G. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1987 (1)

1984 (1)

J. J. Vos, “Disability glare: a state of the art report,” CIE J. 3, 39–53 (1984).

1981 (1)

J. G. Robson and N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

1978 (1)

J. Thomas, “Normal and amblyopic contrast sensitivity functions in central and peripheral retinas,” Invest. Ophthalmol. Visual Sci. 17, 746–753 (1978).

1967 (1)

Aguirre, R.

E. Colombo, L. Issolio, J. Santillán, and R. Aguirre, “What characteristics a clinical CSF system has to have?” Opt. Appl. 39, 415–428 (2008).

Aguirre, R. C.

Akashi, Y.

Y. Akashi and M. Rea, “Peripheral detection while driving under a mesopic light level,” J. Illum. Eng. Soc. 31, 85–93 (2002).

Alcón, E.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

Arjona, M.

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

Artal, P.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

G. Pérez, S. Manzanera, and P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vision 9, 1–10(2009).
[CrossRef]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[CrossRef] [PubMed]

Artigas, J. M.

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461–2466 (1993).
[CrossRef] [PubMed]

Barbur, J. L.

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmol. Physiol. Opt. 26, 288–299(2006).
[CrossRef]

Barraza, J. F.

Benito, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

Bescós, J.

Bouman, M. A.

Buades, M. J.

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461–2466 (1993).
[CrossRef] [PubMed]

Colombo, E.

E. Colombo, L. Issolio, J. Santillán, and R. Aguirre, “What characteristics a clinical CSF system has to have?” Opt. Appl. 39, 415–428 (2008).

Colombo, E. M.

Coppens, J. E.

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal stray light,” Invest. Ophthalmol. Visual Sci. 47, 768–776 (2006).
[CrossRef]

De Casas, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

Díaz-Doutón, F.

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

Felipe, A.

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461–2466 (1993).
[CrossRef] [PubMed]

Franssen, L.

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal stray light,” Invest. Ophthalmol. Visual Sci. 47, 768–776 (2006).
[CrossRef]

Graham, N.

J. G. Robson and N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

Güell, J. L.

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

Harlow, J. A.

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmol. Physiol. Opt. 26, 288–299(2006).
[CrossRef]

Hochberg, Y.

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures (Wiley, 1987).
[CrossRef]

Issolio, L.

E. Colombo, L. Issolio, J. Santillán, and R. Aguirre, “What characteristics a clinical CSF system has to have?” Opt. Appl. 39, 415–428 (2008).

Lingard, R.

R. Lingard and M. Rea, “Off-axis detection at mesopic light levels in a driving context,” J. Illum. Eng. Soc. 31, 33–39 (2002).

Manzanera, S.

G. Pérez, S. Manzanera, and P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vision 9, 1–10(2009).
[CrossRef]

Marín, J. M.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

Murray, I. J.

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555–1564(2000).
[CrossRef] [PubMed]

Murray, J.

J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707–2719 (2003).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Pérez, G.

G. Pérez, S. Manzanera, and P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vision 9, 1–10(2009).
[CrossRef]

Pérez, G. M.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

Plainis, S.

J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707–2719 (2003).
[CrossRef] [PubMed]

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555–1564(2000).
[CrossRef] [PubMed]

Pujol, J.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

Rea, M.

R. Lingard and M. Rea, “Off-axis detection at mesopic light levels in a driving context,” J. Illum. Eng. Soc. 31, 33–39 (2002).

Y. Akashi and M. Rea, “Peripheral detection while driving under a mesopic light level,” J. Illum. Eng. Soc. 31, 85–93 (2002).

Robson, J. G.

J. G. Robson and N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

Santamaría, J.

Santillán, J.

E. Colombo, L. Issolio, J. Santillán, and R. Aguirre, “What characteristics a clinical CSF system has to have?” Opt. Appl. 39, 415–428 (2008).

Tamhane, A. C.

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures (Wiley, 1987).
[CrossRef]

Thomas, J.

J. Thomas, “Normal and amblyopic contrast sensitivity functions in central and peripheral retinas,” Invest. Ophthalmol. Visual Sci. 17, 746–753 (1978).

van den Berg, T. J. T. P.

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal stray light,” Invest. Ophthalmol. Visual Sci. 47, 768–776 (2006).
[CrossRef]

Van Nes, F. L.

Vos, J. J.

J. J. Vos, “Disability glare: a state of the art report,” CIE J. 3, 39–53 (1984).

Walkey, H. C.

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmol. Physiol. Opt. 26, 288–299(2006).
[CrossRef]

Zhang, L.

D. G. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

CIE J. (1)

J. J. Vos, “Disability glare: a state of the art report,” CIE J. 3, 39–53 (1984).

Invest. Ophthalmol. Visual Sci. (3)

L. Franssen, J. E. Coppens, and T. J. T. P. van den Berg, “Compensation comparison method for assessment of retinal stray light,” Invest. Ophthalmol. Visual Sci. 47, 768–776 (2006).
[CrossRef]

F. Díaz-Doutón, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Invest. Ophthalmol. Visual Sci. 47, 1710–1716 (2006).
[CrossRef]

J. Thomas, “Normal and amblyopic contrast sensitivity functions in central and peripheral retinas,” Invest. Ophthalmol. Visual Sci. 17, 746–753 (1978).

J. Illum. Eng. Soc. (2)

Y. Akashi and M. Rea, “Peripheral detection while driving under a mesopic light level,” J. Illum. Eng. Soc. 31, 85–93 (2002).

R. Lingard and M. Rea, “Off-axis detection at mesopic light levels in a driving context,” J. Illum. Eng. Soc. 31, 33–39 (2002).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Vision (1)

G. Pérez, S. Manzanera, and P. Artal, “Impact of scattering and spherical aberration in contrast sensitivity,” J. Vision 9, 1–10(2009).
[CrossRef]

Neuropsychologia (1)

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555–1564(2000).
[CrossRef] [PubMed]

Ophthalmol. Physiol. Opt. (1)

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmol. Physiol. Opt. 26, 288–299(2006).
[CrossRef]

Opt. Appl. (1)

E. Colombo, L. Issolio, J. Santillán, and R. Aguirre, “What characteristics a clinical CSF system has to have?” Opt. Appl. 39, 415–428 (2008).

PLoS ONE (1)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. De Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS ONE 6, e16823 (2011).
[CrossRef] [PubMed]

Vision Res. (4)

J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707–2719 (2003).
[CrossRef] [PubMed]

D. G. Pelli and L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

J. G. Robson and N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461–2466 (1993).
[CrossRef] [PubMed]

Other (2)

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures (Wiley, 1987).
[CrossRef]

Commission Internationale de l’Éclairage, “CIE collection on glare,” Report 146 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Layout of the experimental setup. Ecc represents eccentricities of 0 ° , 7 ° , 14 ° , and 23 ° .

Fig. 2
Fig. 2

RT as a function of the reciprocal of contrast for observer RA, for the four values of eccentricities ( 0 ° , 7 ° , 14 ° , and 23 ° ) and the three values of spatial frequencies (1, 2, and 4 c / deg ) parametric on the three levels of glare: 0 ( ▪ ), 15 (•), 60 lux ( ▴ ). Each point represents the mean of 30 measurements and the error bars ± 1 standard error.

Fig. 3
Fig. 3

Bar diagrams showing the effect of glare on k for each spatial frequency and each eccentricity for the four observers.

Fig. 4
Fig. 4

k as a function of eccentricity considering the illuminance of glare = 60 lux (•) and the no-glare condition (▪) for the four observers and different spatial frequencies.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RT = RT 0 + k 1 / C .

Metrics