Abstract

Laser speckle imaging (LSI) is a fast, noninvasive method to obtain relative particle dynamics in highly light scattering media, such as biological tissue. To make quantitative measurements, we combine LSI with spatial frequency domain imaging, a technique where samples are illuminated with sinusoidal intensity patterns of light that control the characteristic path lengths of photons in the sample. We use both diffusion and radiative transport to predict the speckle contrast of coherent light remitted from turbid media. We validate our technique by measuring known Brownian diffusion coefficients (Db) of scattering liquid phantoms. Monte Carlo (MC) simulations of radiative transport were found to provide the most accurate contrast predictions. For polystyrene microspheres of radius 800nm in water, the expected and fit Db using radiative transport were 6.10E07 and 7.10E07mm2/s, respectively. For polystyrene microspheres of radius 1026nm in water, the expected and fit Db were 4.7E07 and 5.35mm2/s, respectively. For scattering particles in water–glycerin solutions, the fit fractional changes in Db with changes in viscosity were all found to be within 3% of the expected value.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).
  2. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, 1985).
  3. A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2010).
  4. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. BME-27, 597–604 (1980).
    [CrossRef]
  5. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
    [CrossRef] [PubMed]
  6. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
    [CrossRef] [PubMed]
  7. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [CrossRef]
  8. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
    [CrossRef]
  9. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
    [CrossRef] [PubMed]
  10. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
    [CrossRef] [PubMed]
  11. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
    [CrossRef] [PubMed]
  12. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
    [CrossRef] [PubMed]
  13. J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
    [CrossRef] [PubMed]
  14. F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009).
    [CrossRef] [PubMed]
  15. A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
    [CrossRef] [PubMed]
  16. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  17. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
    [CrossRef]
  18. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).
    [CrossRef]
  19. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
    [CrossRef]
  20. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
    [CrossRef]
  21. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51, 3350–3358 (1995).
    [CrossRef]
  22. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
    [CrossRef]
  23. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009).
    [CrossRef]
  24. D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
    [CrossRef] [PubMed]
  25. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  26. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Conference Proceedings (SPIE, 1989), Vol. IS 5, pp. 102–111.
  27. A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B 43, 5934 (1991).
    [CrossRef]
  28. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558 (1994).
    [CrossRef] [PubMed]
  29. S. Prahl, http://omlc.ogi.edu/software/mc/, accessed 1 May 2010.
  30. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15(2008).
    [CrossRef]
  31. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109(2010).
    [CrossRef] [PubMed]
  32. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 3rd ed., McGraw-Hill Series in Electrical Engineering, Communications and Signal Processing (McGraw-Hill, 1986).
  33. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  34. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
    [CrossRef] [PubMed]
  35. N. E. Dorsey, Properties of Ordinary Water-Substance in All its Phases: Water Vapor, Water, and All the Ices (Reinhold, 1989), pp. 2331–2336.
  36. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [CrossRef] [PubMed]
  37. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).
    [CrossRef] [PubMed]
  38. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975–1989 (2008).
    [CrossRef] [PubMed]

2011 (2)

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109(2010).
[CrossRef] [PubMed]

2009 (5)

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[CrossRef] [PubMed]

F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009).
[CrossRef]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

2008 (3)

2006 (2)

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

2005 (2)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[CrossRef] [PubMed]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
[CrossRef]

2004 (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

1999 (2)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef]

P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).
[CrossRef]

1997 (1)

1995 (2)

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51, 3350–3358 (1995).
[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

1991 (1)

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B 43, 5934 (1991).
[CrossRef]

1990 (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[CrossRef]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

1987 (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

1980 (1)

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. BME-27, 597–604 (1980).
[CrossRef]

Aarnoudse, J. G.

Abookasis, D.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

Ayers, F. R.

F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[CrossRef] [PubMed]

Backman, V.

A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2010).

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
[CrossRef]

Bearman, G. H.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[CrossRef] [PubMed]

Binder, D. K.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

Boas, D. A.

Briers, J. D.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Buck, A.

Carlson, A. B.

A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 3rd ed., McGraw-Hill Series in Electrical Engineering, Communications and Signal Processing (McGraw-Hill, 1986).

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Choi, B.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Cuccia, D.

Cuccia, D. J.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009).
[CrossRef]

F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[CrossRef] [PubMed]

Dassel, A. C. M.

de Mul, F. F. M.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
[CrossRef]

Dorsey, N. E.

N. E. Dorsey, Properties of Ordinary Water-Substance in All its Phases: Water Vapor, Water, and All the Ices (Reinhold, 1989), pp. 2331–2336.

Duncan, D. D.

Dunn, A. K.

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
[CrossRef]

P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).
[CrossRef]

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51, 3350–3358 (1995).
[CrossRef]

Durkin, A. J.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Fisher, D. S.

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B 43, 5934 (1991).
[CrossRef]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Foschum, F.

Frangioni, J. V.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

Frostig, R. D.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

Gioux, S.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Gopal, A.

Graaff, R.

Green, K.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

Greve, J.

He, X. W.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Hsu, M.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Conference Proceedings (SPIE, 1989), Vol. IS 5, pp. 102–111.

Johnson, W. R.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Keijzer, M.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Conference Proceedings (SPIE, 1989), Vol. IS 5, pp. 102–111.

Kelly, K. M.

F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009).
[CrossRef] [PubMed]

Kienle, A.

Kim, J.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Koelink, M. H.

Koike, M.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

Konecky, S. D.

LaFerla, F.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

Lay, C. C.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

Lemieux, P. A.

Lin, A.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

Linskey, M. E.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

Maret, G.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Mathews, M. S.

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

Mazhar, A.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

Michels, R.

Middleton, A. A.

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B 43, 5934 (1991).
[CrossRef]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Nilsson, G. E.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. BME-27, 597–604 (1980).
[CrossRef]

Oberg, P. A.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. BME-27, 597–604 (1980).
[CrossRef]

Parthasarathy, A. B.

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

Pecora, R.

R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, 1985).

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Pine, D. J.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

Prahl, S.

S. Prahl, http://omlc.ogi.edu/software/mc/, accessed 1 May 2010.

Prahl, S. A.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Conference Proceedings (SPIE, 1989), Vol. IS 5, pp. 102–111.

Rice, T.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

Richards, G.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef]

Scheffold, F.

Schotland, J. C.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
[CrossRef]

Tenland, T.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. BME-27, 597–604 (1980).
[CrossRef]

Tom, W. J.

Tromberg, B.

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

Tromberg, B. J.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009).
[CrossRef]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[CrossRef] [PubMed]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Völker, A.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Wang, R. K.

Wax, A.

A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2010).

Weber, B.

Weber, J. R.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009).
[CrossRef]

Weitz, D. A.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Welch, A. J.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Conference Proceedings (SPIE, 1989), Vol. IS 5, pp. 102–111.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Wilson, D.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Yodh, A. G.

Zakharov, P.

Zhang, X.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Zhu, J. X.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[CrossRef]

J. Phys. (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[CrossRef]

Ann. Biomed. Eng. (1)

A. Lin, M. Koike, K. Green, J. Kim, A. Mazhar, T. Rice, F. LaFerla, and B. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39, 1349–1357 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. BME-27, 597–604 (1980).
[CrossRef]

J. Appl. Phys. (1)

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys. 105, 102028 (2009).
[CrossRef]

J. Biomed. Opt. (7)

D. Abookasis, C. C. Lay, M. S. Mathews, M. E. Linskey, R. D. Frostig, and B. J. Tromberg, “Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination,” J. Biomed. Opt. 14, 024033 (2009).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15, 010506 (2010).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt. 16, 011015 (2011).
[CrossRef] [PubMed]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109(2010).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Lasers Surg. Med. (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

F. R. Ayers, D. J. Cuccia, K. M. Kelly, and A. J. Durkin, “Wide-field spatial mapping of in vivo tattoo skin optical properties using modulated imaging,” Lasers Surg. Med. 41, 442–453(2009).
[CrossRef] [PubMed]

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B 43, 5934 (1991).
[CrossRef]

Phys. Rev. E (1)

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51, 3350–3358 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110–093111 (2005).
[CrossRef]

Z. Phys. B (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Other (8)

S. Prahl, http://omlc.ogi.edu/software/mc/, accessed 1 May 2010.

A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 3rd ed., McGraw-Hill Series in Electrical Engineering, Communications and Signal Processing (McGraw-Hill, 1986).

N. E. Dorsey, Properties of Ordinary Water-Substance in All its Phases: Water Vapor, Water, and All the Ices (Reinhold, 1989), pp. 2331–2336.

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, 1985).

A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2010).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, SPIE Conference Proceedings (SPIE, 1989), Vol. IS 5, pp. 102–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup, where light from a coherent source reflects off an LCOS display that projects patterns onto the sample surface. Remitted speckle signal is captured by the CCD camera.

Fig. 2
Fig. 2

Data flow for collecting AC speckle contrast amplitude. An image of actual data recorded at each step is provided for reference. The raw sinusoidal speckle image is collected at three equal phases with a CCD chip. Window mean and standard deviation filters of size 7 × 7 are then run over the images. The AC amplitude is extracted for each using the demodulation scheme. Finally, the contrast is determined by taking the ratio of the standard deviation to mean.

Fig. 3
Fig. 3

Dimensionless momentum transfer distribution at short ( 0.3 mm ) and long ( 1.1 mm ) source–detector separations. Note the increasing shift in mean momentum transfer with longer separation.

Fig. 4
Fig. 4

Photon autocorrelation as a function of spatial frequency at multiple time points. Note diffusion and MC agree at short time points ( < 200 μs ) and low frequency ( < 0.1 mm 1 ), but disagree for higher spatial frequencies and integration times.

Fig. 5
Fig. 5

Intensity images in arbitrary units for wells with increased (a) absorption and (b) scattering coefficients going from the bottom well to the top. Speckle contrast is shown for the same wells in (c) and (d). The speckle contrast is then plotted as a function of spatial frequency for three regions of interest along with the MC D b fit (solid curve). Using a single scattering fit, in mm 2 / s , D b 1 = 1.96 × 10 5 , D b 2 = 1.73 × 10 5 , D b 3 = 2.2 × 10 5 , whereas the MC fit that incorporates optical properties finds D b 1 = 2.07 × 10 6 , D b 2 = 1.99 × 10 6 , D b 3 = 2.01 × 10 6 . Note the high variation in perceived motion caused by a change in the optical properties.

Fig. 6
Fig. 6

Diffusion and MC diffusion coefficient fits for 800 nm (top) and 1026 nm (bottom) microspheres. MC modeling provides a clearly superior fit. Note the decrease in fit agreement at low spatial frequencies, likely due to the spatial frequencies introduced by the intensity profile. Error bars indicate the standard deviation between successive measurements.

Fig. 7
Fig. 7

Speckle contrast as a function of spatial frequency with increasing viscosity. The baseline (0% glycerine) solution was set to the fit value D 0 . The corresponding expected and fit diffusion coefficients are plotted for three glycerine concentrations. Error bars indicate the standard deviation between successive measurements.

Tables (2)

Tables Icon

Table 1 Expected and Fit Diffusion Coefficients for Microspheres of Two Different Radii Using Correlation Diffusion and Monte Carlo Models

Tables Icon

Table 2 Viscosity and Fractional Expected Diffusion Coefficient Change with Monte Carlo Correlation Model Fit

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

K = σ I ,
K 2 = 2 T 0 T ( 1 τ T ) | g 1 ( τ ) | 2 d τ ,
G 1 ( τ ) = E ( 0 ) E * ( τ ) = | E | 2 exp ( i = 1 n q i 2 Δ r 2 ( τ ) 6 ) ,
g 1 ( τ ) = exp [ k 0 2 ( s l * ) Δ r 2 ( τ ) 3 ] ,
g 1 ( τ ) = 0 P ( s ) exp [ k 0 2 ( s l * ) Δ r 2 ( τ ) 3 ] d s = exp { [ 3 μ a l * + k 0 2 Δ r 2 ( τ ) ] 1 / 2 | r r s | l * } .
2 G 1 ( r , τ ) μ eff ( τ ) G 1 ( r , τ ) = S ( r ) ,
G 1 ( k , τ ) = 3 A μ s / μ tr ( μ eff ' ( k , τ ) μ tr + 1 ) ( μ eff ' ( k , τ ) μ tr + 3 A ) ,
G 1 ( τ ) = 0 P ( Y ) exp [ k 0 2 Y Δ r 2 ( τ ) 3 ] d Y ,
G 1 ( τ , k ) = 2 π 0 G 1 ( τ , ρ ) J 0 ( k ρ ) ρ d ρ .
I N i = a DC + a AC cos ( 2 π f x + φ i ) ,
I N i = a DC + a AC cos ( 2 π f x + φ i ) a AC = 2 3 [ ( I N 1 I N 2 ) 2 + ( I N 2 I N 3 ) 2 + ( I N 1 I N 3 ) 2 ] 1 / 2 .
K i = σ i I i = a DC σ DC + σ AC a AC cos ( 2 π f x + φ i ) a DC I DC + I AC a AC cos ( 2 π f x + φ i ) ,
K AC = [ ( σ 1 σ 2 ) 2 + ( σ 1 σ 3 ) 2 + ( σ 2 σ 3 ) 2 ] 1 / 2 [ ( I 1 I 2 ) 2 + ( I 1 I 3 ) 2 + ( I 2 I 3 ) 2 ] 1 / 2 = σ AC I AC .
D b = k B T 6 π η r ,
r 1 r 2 = 800 nm 1026 nm = 0.78 D b 2 D b 1 = 5.4 × 10 7 mm 2 / s 7.1 × 10 7 mm 2 / s = 0.76.

Metrics