Abstract

The existing Monte-Carlo-based non-line-of-sight (NLOS) multiple-scatter propagation model is extended to include polarization and also vectorized to improve the simulation speed by about 500 times. This model is validated by the noncoplanar single-scatter model; the results show a perfect match. Numerical examples for various polarization setups are obtained, and results show that the single-scatter and multiple-scatter signals are all polarization dependent. Therefore, NLOS polarized UV communication with a high data rate is achievable—the polarizing information is coded by a time-dependent polarizer, influenced by the atmospheric channel, and decoded according to the distribution characteristics of the scattered signals after the time-independent analyzers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470 (1979).
    [CrossRef]
  2. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972(1991).
    [CrossRef]
  3. Z. Y. Xu, H. P. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008).
    [CrossRef] [PubMed]
  4. H. W. Yin, S. L. Chang, X. F. Wang, J. K. Yang, J. C. Yang, and J. C. Tan, “Analytical model of non-line-of-sight single-scatter propagation,” J. Opt. Soc. Am. A 27, 1505–1509 (2010).
    [CrossRef]
  5. L. J. Wang, Z. Y. Xu, and B. M. Sadler, “Non-line-of-sight ultraviolet link loss in noncoplanar geometry,” Opt. Lett. 35, 1263–1265 (2010).
    [CrossRef] [PubMed]
  6. M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am. A 28, 420–428 (2011).
    [CrossRef]
  7. H. W. Yin, S. L. Chang, H. H. Jia, J. K. Yang, and J. C. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009).
    [CrossRef]
  8. H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544(2009).
    [CrossRef]
  9. M.Bass, C.M.DeCusatis, J.M.Enoch, V.Lakshminarayanan, G.Li, C.MacDonald, V.N.Mahajan, and E.Van Stryland, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010).
  10. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  11. H. C. V. D. Hulst, Light Scattering by Small Particles (Dover, 1981).
  12. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley-VCH, 2008).
    [CrossRef]
  13. G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
    [CrossRef]
  14. K. Bullrich, “Scattered radiation in the atmosphere and the natural aerosol,” Adv. Geophys. 10, 99–260 (1964).
    [CrossRef]
  15. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, 1976).

2011 (1)

2010 (2)

2009 (2)

H. W. Yin, S. L. Chang, H. H. Jia, J. K. Yang, and J. C. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009).
[CrossRef]

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544(2009).
[CrossRef]

2008 (1)

2000 (1)

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
[CrossRef]

1991 (1)

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972(1991).
[CrossRef]

1979 (1)

1964 (1)

K. Bullrich, “Scattered radiation in the atmosphere and the natural aerosol,” Adv. Geophys. 10, 99–260 (1964).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bullrich, K.

K. Bullrich, “Scattered radiation in the atmosphere and the natural aerosol,” Adv. Geophys. 10, 99–260 (1964).
[CrossRef]

Chang, S. L.

Chen, G.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544(2009).
[CrossRef]

Z. Y. Xu, H. P. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008).
[CrossRef] [PubMed]

Ding, H. P.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544(2009).
[CrossRef]

Z. Y. Xu, H. P. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008).
[CrossRef] [PubMed]

Elshimy, M. A.

Griffin, M. K.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
[CrossRef]

Hranilovic, S.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hulst, H. C. V. D.

H. C. V. D. Hulst, Light Scattering by Small Particles (Dover, 1981).

Iyengar, M.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
[CrossRef]

Jia, H. H.

Kalos, M. H.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley-VCH, 2008).
[CrossRef]

Kaushik, S.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
[CrossRef]

Luettgen, M. R.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972(1991).
[CrossRef]

Majumdar, A. K.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544(2009).
[CrossRef]

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, 1976).

Nischan, M.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
[CrossRef]

Reilly, D. M.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972(1991).
[CrossRef]

D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470 (1979).
[CrossRef]

Sadler, B. M.

Shapiro, J. H.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972(1991).
[CrossRef]

Shaw, G. A.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
[CrossRef]

Tan, J. C.

Wang, L. J.

Wang, X. F.

Warde, C.

Whitlock, P. A.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley-VCH, 2008).
[CrossRef]

Xu, Z. Y.

Yang, J. C.

Yang, J. K.

Yin, H. W.

Adv. Geophys. (1)

K. Bullrich, “Scattered radiation in the atmosphere and the natural aerosol,” Adv. Geophys. 10, 99–260 (1964).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544(2009).
[CrossRef]

J. Opt. Soc. Am. (2)

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. 8, 1964–1972(1991).
[CrossRef]

D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470 (1979).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Lett. (2)

Proc. SPIE (1)

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV communication for distributed sensor systems,” Proc. SPIE 4126, 83–96 (2000).
[CrossRef]

Other (5)

E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, 1976).

M.Bass, C.M.DeCusatis, J.M.Enoch, V.Lakshminarayanan, G.Li, C.MacDonald, V.N.Mahajan, and E.Van Stryland, Handbook of Optics, 3rd ed. (McGraw-Hill, 2010).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

H. C. V. D. Hulst, Light Scattering by Small Particles (Dover, 1981).

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley-VCH, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

NLOS multiple-scatter propagation link.

Fig. 2
Fig. 2

Simulation results for scattering signals and polarizations with the polarization-sensitive model and the model of [6] (the discrete points represent the single-scatter power generated with the model of [6]).

Fig. 3
Fig. 3

Distribution of the single-scatter energies with different polarization setups.

Fig. 4
Fig. 4

Distribution of the multiple-scatter energies with different polarization setups.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R M ( ψ s ) = ( 1 0 0 0 0 cos ( 2 ψ s ) sin ( 2 ψ s ) 0 0 sin ( 2 ψ s ) cos ( 2 ψ s ) 0 0 0 0 1 )
S R = M A R M ( ψ A ) [ M ( θ s ) R M ( ψ s ) ] n M P ( 1 , 0 , 0 , 0 ) T ,
P r ( θ s ) = 3 [ 1 + 3 γ + ( 1 γ ) cos 2 ( θ s ) ] 4 ( 1 + 2 γ ) ,
P m ( θ s ) = ( 1 g 2 ) [ 1 ( 1 + g 2 2 g cos θ s ) 3 / 2 + f 0.5 ( 3 cos 2 θ s 1 ) ( 1 + g 2 ) 3 / 2 ] ,
P ( θ s ) = k s r k s P r ( θ s ) + k s m k s P m ( θ s ) .
k s r k s M r ( θ s ) + k s m k s M m ( θ s ) = ( S 11 ( θ s ) S 12 ( θ s ) 0 0 S 12 ( θ s ) S 11 ( θ s ) 0 0 0 0 S 33 ( θ s ) S 34 ( θ s ) 0 0 S 34 ( θ s ) S 33 ( θ s ) ) .
M ( θ s ) = P ( θ s ) S 11 ( θ s ) ( S 11 ( θ s ) S 12 ( θ s ) 0 0 S 12 ( θ s ) S 11 ( θ s ) 0 0 0 0 S 33 ( θ s ) S 34 ( θ s ) 0 0 S 34 ( θ s ) S 33 ( θ s ) ) .
( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) ,
1 2 ( 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ) , 1 2 ( 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ) , 1 2 ( 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 ) , 1 2 ( 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 ) , 1 2 ( 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 ) , 1 2 ( 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 ) ,

Metrics