Abstract

In the context of color perception on modern wide-gamut displays with narrowband spectral primaries, we performed a theoretical analysis on various aspects of physiological observers proposed by CIE TC 1-36 (CIEPO06). We allowed certain physiological factors to vary, which was not considered in the CIEPO06 framework. For example, we analyzed that the long-wave-sensitive (LWS) or medium-wave-sensitive (MWS) peak wavelength shift in the photopigment absorption spectra, a factor not modeled in CIEPO06, contributed more toward observer variability than some of the factors considered in the model. Further, we compared the color-matching functions derived from the CIEPO06 model and the CIE 10° standard colorimetric observer to the average observer data from three distinct subgroups of Stiles–Burch observers, formed on the basis of observer ages (22–23 years, 27–29 years, and 49–50 years). The errors in predicting the x¯(λ) and y¯(λ) color-matching functions of the intragroup average observers in the long-wave range and in the medium-wave range, respectively, were generally more in the case of the CIEPO06 model compared to the 10° standard colorimetric observer and manifested in both spectral and chromaticity space. In contrast, the short-wave-sensitive z¯10(λ) function of the 10° standard colorimetric observer performed poorly compared to the CIEPO06 model for all three subgroups. Finally, a constrained nonlinear optimization on the CIEPO06 model outputs showed that a peak wavelength shift of photopigment density alone could not improve the model prediction errors at higher wavelengths. As an alternative, two optimized weighting functions for each of the LWS and MWS cone photopigment densities led to significant improvement in the prediction of intra-age-group average data for both the 22–23 year and 49–50 year age groups. We hypothesize that the assumption in the CIEPO06 model that the peak optical density of visual pigments does not vary with age is false and is the source of these prediction errors at higher wavelengths. Correcting these errors in the model can lead to an improved age-dependent observer and can also help update the current CIE 10° standard colorimetric observer. Accordingly, it would reduce the discrepancies between color matches with broadband spectral primaries and color matches with narrowband spectral primaries.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc. 30, 141–164(1929).
    [CrossRef]
  2. J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. A 230, 149–187 (1932).
    [CrossRef]
  3. CIE, Sixième Session, Genève, Juillet, 1924, Recueil des Travaux et Compte Rendu de Séances (Cambridge University, 1926), pp 67–69.
  4. R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed. (Wiley, 2000).
  5. V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, 2nd ed, S.K.Shevell, ed. (Elsevier, , 2003), pp. 103–148.
    [CrossRef]
  6. D. B. Judd, “Colorimetry and artificial daylight,” in Technical Committee No. 7 Report of Secretariat United States Commission (International Commission on Illumination, 1951), pp. 1–60.
  7. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [CrossRef]
  8. CIE 1988, “2° spectral luminous efficiency function for photopic vision,” CIE 86-1990 (Commission Internationale de l’Éclairage, 1990).
  9. W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
    [CrossRef]
  10. N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Opt. Spectrosc. 7, 424–428(1959).
  11. “Fundamental chromaticity diagram with physiological axes–Part I,” CIE Technical Report 170-1 (CIE, 2006).
  12. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long- wavelengthsensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
    [CrossRef] [PubMed]
  13. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of human cones,” J. Opt. Soc. Am. A 10, 2491–2521(1993).
    [CrossRef]
  14. D. I. A. MacLeod and M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 81–92.
  15. V. C. Smith, J. Pokorny, and Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983).
  16. F. Viénot, “Relations between inter- and intra-individual variability of color matching functions. experimental results,” J. Opt. Soc. Am. 70, 1476–1483 (1980).
    [CrossRef] [PubMed]
  17. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  18. A. North and M. Fairchild, “Measuring color-matching functions. Part I,” Color Res. Appl. 18, 155–162 (1993).
    [CrossRef]
  19. A. North and M. Fairchild, “Measuring color-matching functions. Part II. New data for assessing observer metamerism,” Color Res. Appl. 18, 163–170 (1993).
    [CrossRef]
  20. B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on colour matching of display and surface colours,” Color Res. Appl. 33, 346–359 (2008).
    [CrossRef]
  21. C. Oleari and M. Pavesi, “Grassmann’s laws and individual color-matching functions for nonspectral primaries evaluated by maximum saturation technique in foveal vision,” Color Res. Appl. 33, 271–281 (2008).
    [CrossRef]
  22. Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.
  23. J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
    [CrossRef] [PubMed]
  24. J. C. He and S. K. Shevell, “Individual differences in cone photopigments of normal trichromats measured by dual Raleigh-type color matches,” Vision Res. 34, 367–376 (1994).
    [CrossRef] [PubMed]
  25. F. Viénot, L. Serreault, and P. P. Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Visual Neurosci. 23, 1–8 (2006).
    [CrossRef]
  26. J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
    [CrossRef]
  27. P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Visual Neurosci. 21, 477–482 (2004).
    [CrossRef]
  28. P. Csuti and J. Schanda, “Colour matching experiments with RGB-LEDs,” Color Res. Appl. 33, 108–112 (2008).
    [CrossRef]
  29. M. A. Webster, “Reanalysis of λmax variations in the Stiles-Burch 10° color-matching functions,” J. Opt. Soc. Am. A 9, 1419–1421(1992).
    [CrossRef] [PubMed]
  30. L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, 1st ed., K.R.Gegenfurtner, L.T.Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 3–52.
  31. A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).
  32. V. C. Smith and J. Pokorny, “Chromatic-discrimination axes, CRT phosphor spectra and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995).
    [CrossRef]
  33. O. Packer and D. R. Williams, “Light, the retinal image and photoreceptors,” in The Science of Color, 2nd ed., S.K.Shevell, ed. (Elsevier, 2003), pp. 41–102.
    [CrossRef]
  34. V. C. Smith and J. Pokorny, “The design and use of a cone-chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
    [CrossRef]
  35. E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromatic discrimination,” J. Opt. Soc. Am. A 10, 545–553(1993).
    [CrossRef] [PubMed]
  36. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1185 (1979).
    [CrossRef]
  37. R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
    [CrossRef]
  38. A. Stockman, Colour & Vision Research Laboratory website, http://www.cvrl.org/.
  39. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef] [PubMed]
  40. P. Csuti and J. Schanda, “A better description of metameric experience of LED clusters,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (Commission Internationale de l’Éclairage, 2009).
  41. A. E. Elsner, L. Berk, S. A. Burns, and P. R. Rosenberg, “Aging and human cone photopigments,” J. Opt. Soc. Am. A 5, 2106–2112 (1988).
    [CrossRef] [PubMed]
  42. W. H. Swanson and G. E. Fish, “Age-related changes in the colour-match-area effect,” Vision Res. 36, 2079–2085 (1996).
    [CrossRef] [PubMed]
  43. A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
    [CrossRef]
  44. M. A. Webster and D. I. A. MacLeod, “Factors underlying individual-differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
    [CrossRef] [PubMed]
  45. V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
    [CrossRef] [PubMed]

2008 (4)

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on colour matching of display and surface colours,” Color Res. Appl. 33, 346–359 (2008).
[CrossRef]

C. Oleari and M. Pavesi, “Grassmann’s laws and individual color-matching functions for nonspectral primaries evaluated by maximum saturation technique in foveal vision,” Color Res. Appl. 33, 271–281 (2008).
[CrossRef]

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

P. Csuti and J. Schanda, “Colour matching experiments with RGB-LEDs,” Color Res. Appl. 33, 108–112 (2008).
[CrossRef]

2006 (1)

F. Viénot, L. Serreault, and P. P. Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Visual Neurosci. 23, 1–8 (2006).
[CrossRef]

2004 (2)

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Visual Neurosci. 21, 477–482 (2004).
[CrossRef]

A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
[CrossRef]

2000 (1)

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long- wavelengthsensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

1996 (2)

V. C. Smith and J. Pokorny, “The design and use of a cone-chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

W. H. Swanson and G. E. Fish, “Age-related changes in the colour-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

J. C. He and S. K. Shevell, “Individual differences in cone photopigments of normal trichromats measured by dual Raleigh-type color matches,” Vision Res. 34, 367–376 (1994).
[CrossRef] [PubMed]

1993 (4)

A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of human cones,” J. Opt. Soc. Am. A 10, 2491–2521(1993).
[CrossRef]

A. North and M. Fairchild, “Measuring color-matching functions. Part I,” Color Res. Appl. 18, 155–162 (1993).
[CrossRef]

A. North and M. Fairchild, “Measuring color-matching functions. Part II. New data for assessing observer metamerism,” Color Res. Appl. 18, 163–170 (1993).
[CrossRef]

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromatic discrimination,” J. Opt. Soc. Am. A 10, 545–553(1993).
[CrossRef] [PubMed]

1992 (1)

1990 (1)

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

1988 (2)

1987 (1)

1980 (2)

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

F. Viénot, “Relations between inter- and intra-individual variability of color matching functions. experimental results,” J. Opt. Soc. Am. 70, 1476–1483 (1980).
[CrossRef] [PubMed]

1979 (1)

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1185 (1979).
[CrossRef]

1978 (1)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

1976 (1)

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef] [PubMed]

1959 (2)

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Opt. Spectrosc. 7, 424–428(1959).

1932 (1)

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. A 230, 149–187 (1932).
[CrossRef]

1929 (1)

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc. 30, 141–164(1929).
[CrossRef]

Autrusseau, F.

A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).

Barbur, J. L.

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

Berk, L.

Berns, R. S.

R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed. (Wiley, 2000).

Blondé, L.

A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).

Boycott, B. B.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, 1st ed., K.R.Gegenfurtner, L.T.Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 3–52.

Boynton, R. M.

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1185 (1979).
[CrossRef]

Burch, J. M.

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

Burns, S. A.

Callet, P. L.

A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).

CIE,

CIE, Sixième Session, Genève, Juillet, 1924, Recueil des Travaux et Compte Rendu de Séances (Cambridge University, 1926), pp 67–69.

Csuti, P.

P. Csuti and J. Schanda, “Colour matching experiments with RGB-LEDs,” Color Res. Appl. 33, 108–112 (2008).
[CrossRef]

P. Csuti and J. Schanda, “A better description of metameric experience of LED clusters,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (Commission Internationale de l’Éclairage, 2009).

Elsner, A. E.

Fairchild, M.

A. North and M. Fairchild, “Measuring color-matching functions. Part I,” Color Res. Appl. 18, 155–162 (1993).
[CrossRef]

A. North and M. Fairchild, “Measuring color-matching functions. Part II. New data for assessing observer metamerism,” Color Res. Appl. 18, 163–170 (1993).
[CrossRef]

Fernandez, P. P.

F. Viénot, L. Serreault, and P. P. Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Visual Neurosci. 23, 1–8 (2006).
[CrossRef]

Fish, G. E.

W. H. Swanson and G. E. Fish, “Age-related changes in the colour-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

Guild, J.

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. A 230, 149–187 (1932).
[CrossRef]

Harlow, J. A.

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

He, J. C.

J. C. He and S. K. Shevell, “Individual differences in cone photopigments of normal trichromats measured by dual Raleigh-type color matches,” Vision Res. 34, 367–376 (1994).
[CrossRef] [PubMed]

Jacobs, G. H.

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

Jägle, H.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, 1st ed., K.R.Gegenfurtner, L.T.Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 3–52.

Johnson, N. E.

Judd, D. B.

D. B. Judd, “Colorimetry and artificial daylight,” in Technical Committee No. 7 Report of Secretariat United States Commission (International Commission on Illumination, 1951), pp. 1–60.

Kambe, N.

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

Knau, H.

A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
[CrossRef]

Kohda, J.

Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.

Luo, M. R.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on colour matching of display and surface colours,” Color Res. Appl. 33, 346–359 (2008).
[CrossRef]

Lutze, M.

MacLeod, D. I. A.

A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of human cones,” J. Opt. Soc. Am. A 10, 2491–2521(1993).
[CrossRef]

M. A. Webster and D. I. A. MacLeod, “Factors underlying individual-differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1185 (1979).
[CrossRef]

D. I. A. MacLeod and M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 81–92.

Mancuso, K.

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

Miyahara, E.

Mollon, J. D.

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Visual Neurosci. 21, 477–482 (2004).
[CrossRef]

Morita, H.

Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.

Morvan, P.

A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).

Nakano, Y.

Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.

Nakayasu, Y.

Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.

Nathans, J.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, 1st ed., K.R.Gegenfurtner, L.T.Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 3–52.

Neitz, J.

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
[CrossRef]

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

Neitz, M.

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
[CrossRef]

North, A.

A. North and M. Fairchild, “Measuring color-matching functions. Part I,” Color Res. Appl. 18, 155–162 (1993).
[CrossRef]

A. North and M. Fairchild, “Measuring color-matching functions. Part II. New data for assessing observer metamerism,” Color Res. Appl. 18, 163–170 (1993).
[CrossRef]

Oicherman, B.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on colour matching of display and surface colours,” Color Res. Appl. 33, 346–359 (2008).
[CrossRef]

Oleari, C.

C. Oleari and M. Pavesi, “Grassmann’s laws and individual color-matching functions for nonspectral primaries evaluated by maximum saturation technique in foveal vision,” Color Res. Appl. 33, 271–281 (2008).
[CrossRef]

Packer, O.

O. Packer and D. R. Williams, “Light, the retinal image and photoreceptors,” in The Science of Color, 2nd ed., S.K.Shevell, ed. (Elsevier, 2003), pp. 41–102.
[CrossRef]

Pavesi, M.

C. Oleari and M. Pavesi, “Grassmann’s laws and individual color-matching functions for nonspectral primaries evaluated by maximum saturation technique in foveal vision,” Color Res. Appl. 33, 271–281 (2008).
[CrossRef]

Pokorny, J.

V. C. Smith and J. Pokorny, “The design and use of a cone-chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

V. C. Smith and J. Pokorny, “Chromatic-discrimination axes, CRT phosphor spectra and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995).
[CrossRef]

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromatic discrimination,” J. Opt. Soc. Am. A 10, 545–553(1993).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983).

V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, 2nd ed, S.K.Shevell, ed. (Elsevier, , 2003), pp. 103–148.
[CrossRef]

Renner, A. B.

A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
[CrossRef]

Rigg, B.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on colour matching of display and surface colours,” Color Res. Appl. 33, 346–359 (2008).
[CrossRef]

Robertson, A. R.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on colour matching of display and surface colours,” Color Res. Appl. 33, 346–359 (2008).
[CrossRef]

Rodriguez-Carmona, M.

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

Rosenberg, P. R.

Sarkar, A.

A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).

Schanda, J.

P. Csuti and J. Schanda, “Colour matching experiments with RGB-LEDs,” Color Res. Appl. 33, 108–112 (2008).
[CrossRef]

P. Csuti and J. Schanda, “A better description of metameric experience of LED clusters,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (Commission Internationale de l’Éclairage, 2009).

Serreault, L.

F. Viénot, L. Serreault, and P. P. Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Visual Neurosci. 23, 1–8 (2006).
[CrossRef]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long- wavelengthsensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, 1st ed., K.R.Gegenfurtner, L.T.Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 3–52.

Shevell, S. K.

J. C. He and S. K. Shevell, “Individual differences in cone photopigments of normal trichromats measured by dual Raleigh-type color matches,” Vision Res. 34, 367–376 (1994).
[CrossRef] [PubMed]

Smith, V. C.

V. C. Smith and J. Pokorny, “The design and use of a cone-chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

V. C. Smith and J. Pokorny, “Chromatic-discrimination axes, CRT phosphor spectra and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995).
[CrossRef]

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromatic discrimination,” J. Opt. Soc. Am. A 10, 545–553(1993).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983).

V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, 2nd ed, S.K.Shevell, ed. (Elsevier, , 2003), pp. 103–148.
[CrossRef]

Speranskaya, N. I.

N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Opt. Spectrosc. 7, 424–428(1959).

Starr, S. J.

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef] [PubMed]

Stauder, J.

A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).

Stiles, W. S.

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Stockman, A.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long- wavelengthsensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of human cones,” J. Opt. Soc. Am. A 10, 2491–2521(1993).
[CrossRef]

A. Stockman, Colour & Vision Research Laboratory website, http://www.cvrl.org/.

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, 1st ed., K.R.Gegenfurtner, L.T.Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 3–52.

Suehara, K.

Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.

Swanson, W. H.

W. H. Swanson and G. E. Fish, “Age-related changes in the colour-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

Thomas, P. B. M.

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Visual Neurosci. 21, 477–482 (2004).
[CrossRef]

Viénot, F.

F. Viénot, L. Serreault, and P. P. Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Visual Neurosci. 23, 1–8 (2006).
[CrossRef]

F. Viénot, “Relations between inter- and intra-individual variability of color matching functions. experimental results,” J. Opt. Soc. Am. 70, 1476–1483 (1980).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

Webster, M. A.

Werner, J. S.

A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
[CrossRef]

Williams, D. R.

O. Packer and D. R. Williams, “Light, the retinal image and photoreceptors,” in The Science of Color, 2nd ed., S.K.Shevell, ed. (Elsevier, 2003), pp. 41–102.
[CrossRef]

Wright, W. D.

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc. 30, 141–164(1929).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Yano, T.

Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.

Zaidi, Q.

V. C. Smith, J. Pokorny, and Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983).

Appl. Opt. (1)

Color Res. Appl. (8)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

A. North and M. Fairchild, “Measuring color-matching functions. Part I,” Color Res. Appl. 18, 155–162 (1993).
[CrossRef]

A. North and M. Fairchild, “Measuring color-matching functions. Part II. New data for assessing observer metamerism,” Color Res. Appl. 18, 163–170 (1993).
[CrossRef]

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on colour matching of display and surface colours,” Color Res. Appl. 33, 346–359 (2008).
[CrossRef]

C. Oleari and M. Pavesi, “Grassmann’s laws and individual color-matching functions for nonspectral primaries evaluated by maximum saturation technique in foveal vision,” Color Res. Appl. 33, 271–281 (2008).
[CrossRef]

P. Csuti and J. Schanda, “Colour matching experiments with RGB-LEDs,” Color Res. Appl. 33, 108–112 (2008).
[CrossRef]

V. C. Smith and J. Pokorny, “The design and use of a cone-chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

Opt. Acta (1)

W. S. Stiles and J. M. Burch, “N.P.L. colour-matching investigation: final report,” Opt. Acta 6, 1–26 (1959).
[CrossRef]

Opt. Spectrosc. (1)

N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Opt. Spectrosc. 7, 424–428(1959).

Phil. Trans. R. Soc. A (1)

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. A 230, 149–187 (1932).
[CrossRef]

Trans. Opt. Soc. (1)

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc. 30, 141–164(1929).
[CrossRef]

Vision Res. (5)

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long- wavelengthsensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vision Res. 30, 621–636 (1990).
[CrossRef] [PubMed]

J. C. He and S. K. Shevell, “Individual differences in cone photopigments of normal trichromats measured by dual Raleigh-type color matches,” Vision Res. 34, 367–376 (1994).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, and S. J. Starr, “Variability of color mixture data—I. Interobserver variability in the unit coordinates,” Vision Res. 16, 1087–1094 (1976).
[CrossRef] [PubMed]

W. H. Swanson and G. E. Fish, “Age-related changes in the colour-match-area effect,” Vision Res. 36, 2079–2085 (1996).
[CrossRef] [PubMed]

Visual Neurosci, (1)

A. B. Renner, H. Knau, M. Neitz, J. Neitz, and J. S. Werner, “Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea,” Visual Neurosci, 21, 827–834 (2004).
[CrossRef]

Visual Neurosci. (3)

F. Viénot, L. Serreault, and P. P. Fernandez, “Convergence of experimental multiple Rayleigh matches to peak L- and M-photopigment sensitivity estimates,” Visual Neurosci. 23, 1–8 (2006).
[CrossRef]

J. L. Barbur, M. Rodriguez-Carmona, J. A. Harlow, K. Mancuso, J. Neitz, and M. Neitz, “A study of unusual Rayleigh matches in deutan deficiency,” Visual Neurosci. 25, 507–516(2008).
[CrossRef]

P. B. M. Thomas and J. D. Mollon, “Modelling the Rayleigh match,” Visual Neurosci. 21, 477–482 (2004).
[CrossRef]

Other (15)

L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, 1st ed., K.R.Gegenfurtner, L.T.Sharpe, and B. B. Boycott, eds. (Cambridge University, 2001), pp. 3–52.

A. Sarkar, L. Blondé, P. L. Callet, F. Autrusseau, J. Stauder, and P. Morvan, “Study of observer variability in modern display colorimetry: an analysis of CIE 2006 model,” in Proceedings of the 11th Congress of the International Colour Association (AIC), D.Smith, P.Green-Armytage, M.A.Pope, and N.Harkness, eds. (CD) (Colour Society of Australia, 2009).

A. Stockman, Colour & Vision Research Laboratory website, http://www.cvrl.org/.

O. Packer and D. R. Williams, “Light, the retinal image and photoreceptors,” in The Science of Color, 2nd ed., S.K.Shevell, ed. (Elsevier, 2003), pp. 41–102.
[CrossRef]

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

D. I. A. MacLeod and M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983), pp. 81–92.

V. C. Smith, J. Pokorny, and Q. Zaidi, “How do sets of color-matching functions differ?” in Colour Vision: Physiology and Psychophysics, J.D.Mollon and L.T.Sharpe, eds. (Academic, 1983).

Y. Nakano, Y. Nakayasu, H. Morita, K. Suehara, J. Kohda, and T. Yano, “Individual difference of color matching functions and its cause,” presented at the ISCC/CIE Expert Symposium, Ottawa, Ontario, Canada, 16–17 May 2006.

CIE, Sixième Session, Genève, Juillet, 1924, Recueil des Travaux et Compte Rendu de Séances (Cambridge University, 1926), pp 67–69.

R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed. (Wiley, 2000).

V. C. Smith and J. Pokorny, “Color matching and color discrimination,” in The Science of Color, 2nd ed, S.K.Shevell, ed. (Elsevier, , 2003), pp. 103–148.
[CrossRef]

D. B. Judd, “Colorimetry and artificial daylight,” in Technical Committee No. 7 Report of Secretariat United States Commission (International Commission on Illumination, 1951), pp. 1–60.

“Fundamental chromaticity diagram with physiological axes–Part I,” CIE Technical Report 170-1 (CIE, 2006).

CIE 1988, “2° spectral luminous efficiency function for photopic vision,” CIE 86-1990 (Commission Internationale de l’Éclairage, 1990).

P. Csuti and J. Schanda, “A better description of metameric experience of LED clusters,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (Commission Internationale de l’Éclairage, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Block diagram of the CIEPO06 framework.

Fig. 2
Fig. 2

Spectral power distributions of the two displays used in the analysis.

Fig. 3
Fig. 3

Seven test stimuli in ( u , v ) chromaticity diagram.

Fig. 4
Fig. 4

Seven test stimuli in Boynton–Kambe relative cone-troland coordinates based on CIEPO06 10 ° cone fundamentals.

Fig. 5
Fig. 5

Simulated chromaticity shift for seven test stimuli due to modified cone fundamentals in ( u , v ) chromaticity diagram. The circles show the original chromaticities of the stimuli. Increase (squares) and decrease (triangles) of the peak optical density by 25% are shown (a) for ocular media, (b) for macular pigment, and (c) for photopigment peak optical density.(d) Peak wavelength shift of LWS cone photopigment by 4 nm toward shorter wavelengths (squares) and of MWS cone photopigment by 4 nm toward longer wavelengths (triangles). Light green symbols correspond to the CRT and dark red symbols to LCD.

Fig. 6
Fig. 6

Simulated chromaticity shift for seven test stimuli due to modified cone fundamentals in relative cone-troland space. The circles show the original chromaticities of the stimuli. Increase (squares) and decrease (triangles) of the peak optical density by 25% are shown (a) for ocular media, (b) for macular pigment, and (c) for photopigment peak optical density. (d) Peak wavelength shift of LWS cone photopigment by 4 nm toward shorter wavelengths (squares) and of MWS cone photopigment by 4 nm toward longer wavelengths (triangles). Light green symbols correspond to the CRT and dark red symbols to LCD.

Fig. 7
Fig. 7

Age correspondence between CIEPO06 model’s best prediction and 47 Stiles–Burch observers.

Fig. 8
Fig. 8

Chromaticities of matches of equal-energy white, computed using cone fundamentals from the 47 Stiles–Burch observer data and CIEPO06 predictions, with two adjustment methods for age (CORR and RMSE) as well as with actual observer age.

Fig. 9
Fig. 9

Mean standard deviation of CIEPO06 cone fundamentals from the 47 Stiles–Burch observer data, with two adjustment methods for age (CORR and RMSE) as well as with actual observer age. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the most extreme data points that are not considered outliers, while outliers are plotted individually as small circles.

Fig. 10
Fig. 10

CMFs for the Stiles–Burch intragroup average observer (green curve with squares), CIEPO06 model predictions (blue triangles), CIEPO06 model predictions with age correspondence (red solid circles) and CIE 10 ° standard colorimetric observer (black stars) for Groups 1 (top row), 2 (middle row), and 3 (bottom row). Stiles–Burch observers’ intragroup minimum (solid black curve) and maximum (black curve with open circles) are also shown. Each plot shows the CMFs around the peak only.

Fig. 11
Fig. 11

Weighting functions for optimizing the LWS (left) and MWS (right) low-density spectral absorbance. Optimization was performed above 550 nm .

Tables (6)

Tables Icon

Table 1 CIE 1964 x y and CIE 1976 ( u , v ) Chromaticity Coordinates for Seven Test Stimuli and the Display Whites

Tables Icon

Table 2 ( u , v ) RMS Distance ( × 1000 ) from Average Cone Fundamental

Tables Icon

Table 3 Deviations of CMF Data from Intragroup Average Stiles–Burch Observer, 10 ° Standard Colorimetric Observer, and CIEPO06 Model Predictions with Age Correspondence and with Real Ages

Tables Icon

Table 4 ( u , v ) Normalized RMS Distances ( × 100 ) of Predicted Chromaticity Values from Stiles–Burch Intragroup Average CMFs, Computed for Seven Test Stimuli as Viewed on the LCD a

Tables Icon

Table 5 Comparison of Deviations of CMF Data from Intragroup Average Stiles–Burch Observer, 10 ° Standard Colorimetric Observer, CIEPO06 Original Model Predictions, and Optimized CIEPO06 Model with Modified Low-Density Absorbance Spectra

Tables Icon

Table 6 ( u , v ) Normalized RMS Distances ( × 100 ) from Stiles–Burch Intragroup Average Chromaticities Computed for Seven Test Stimuli as Viewed on the LCD a

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

[ x ¯ 10 ( λ ) y ¯ 10 ( λ ) z ¯ 10 ( λ ) ] = [ 1 . 905378 1 . 321620 0 . 419512 0 . 698648 0 . 333043 0 . 013360 0 . 024300 0 . 040453 2 . 073582 ] [ l ¯ SB 10 N ( λ ) m ¯ SB 10 N ( λ ) s ¯ SB 10 N ( λ ) ] .
[ x ¯ 10 ( λ ) y ¯ 10 ( λ ) z ¯ 10 ( λ ) ] = [ 0 . 006873 0 . 005386 0 . 005550 0 . 002520 0 . 001358 0 . 000181 0 . 000089 0 . 000167 0 . 027432 ] [ l ¯ CIE 06 10 ( λ ) m ¯ CIE 06 10 ( λ ) s ¯ CIE 06 10 ( λ ) ] .
l ¯ ( λ ) = [ 1 10 D vis , l . A l ( λ ) ] · 10 D mac ( λ ) · 10 D ocul ( λ ) , m ¯ ( λ ) = [ 1 10 D vis , m . A m ( λ ) ] · 10 D mac ( λ ) · 10 D ocul ( λ ) , s ¯ ( λ ) = [ 1 10 D vis , s . A s ( λ ) ] · 10 D mac ( λ ) · 10 D ocul ( λ ) .
x = 9 u 6 u 16 v + 12 , y = 4 v 6 u 16 v + 12 , X = x y Y , Z = z y Y .
[ R G B ] = [ X r , max X g , max X b , max Y r , max Y g , max Y b , max Z r , max Z g , max Z b , max ] 1 * [ X 10 Y 10 Z 10 ] .
P stim ( λ ) = [ R G B ] * [ P pri R ( λ ) P pri G ( λ ) P pri B ( λ ) ] .
l MB = L L + M , s MB = S L + M .
V SS , 10 ( λ ) = 0.692839 l ¯ ( λ ) + 0.349676 m ¯ ( λ ) ,
l SC ( λ ) = l ¯ ( λ ) * 1.98 ,
[ L M S ] = [ l SC ( λ ) m ( λ ) s ( λ ) ] * P stim ( λ ) .
Y stim = [ R G B ] * [ Y R max Y G max Y B max ] .
rms = 100 · ( u pred u av , SB u av , SB ) 2 + ( v pred v av , SB v av , SB ) 2 .
l ¯ opt ( λ ) = [ 1 10 D vis , l . A shifted , l ( λ ) ] · 10 D mac ( λ ) · 10 D ocul ( λ ) , m ¯ opt ( λ ) = [ 1 10 D vis , m . A shifted , m ( λ ) ] · 10 D mac ( λ ) · 10 D ocul ( λ ) .
l ¯ opt ( λ ) = [ 1 10 D vis , l · A l ( λ ) · w ( λ ) l ] · 10 D mac ( λ ) · 10 D ocul ( λ ) , m ¯ opt ( λ ) = [ 1 10 D vis , m . A m ( λ ) · w ( λ ) m ] · 10 D mac ( λ ) · 10 D ocul ( λ ) .

Metrics