Abstract

A first approach of a modal method by Gegenbauer polynomial expansion (MMGE1) is presented for a plane wave diffraction by a lamellar grating. Modal methods are among the most popular methods that are used to solve the problem of lamellar gratings. They consist in describing the electromagnetic field in terms of eigenfunctions and eigenvalues of an operator. In the particular case of the Fourier modal method (FMM), the eigenfunctions are approximated by a finite Fourier sum, and this approximation can lead to a poor convergence of the FMM. The Wilbraham–Gibbs phenomenon may be one of the reasons for this poor convergence. Thus, it is interesting to investigate other basis functions that may represent the fields more accurately. The approach proposed in this paper consists in subdividing the pattern in homogeneous layers, according to the periodicity axis. The field is expanded, in each layer, on the basis of Gegenbauer’s polynomials. Boundary conditions are rigorously written between adjacent layers; thus, an eigenvalue equation is obtained. The approach presented in this paper proves to describe the fields accurately. Finally, it is demonstrated that the results obtained with the MMGE1 are more accurate than several existing modal methods, such as the classical and the parametric FMM.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelet element method for lamellar gratings

Zhangyi Liu, Jiu Hui Wu, and Li Shen
J. Opt. Soc. Am. A 30(5) 1021-1029 (2013)

Matched coordinates in the framework of polynomial modal methods for complex metasurface modeling

K. Edee, J.-P. Plumey, A. Moreau, and B. Guizal
J. Opt. Soc. Am. A 35(4) 608-615 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription