G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates,” Opt. Commun. 283, 517–521(2010).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A Pure Appl. Opt. 11, 015705 (2009).

[CrossRef]

S. Saengkaew, G. Godard, J. B. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

A. A. Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008).

[CrossRef]

N. Riefler, R. Schuh, and T. Wriedt, “Investigation of a measurement technique to estimate concentration and size of inclusions in droplets,” Meas. Sci. Technol. 18, 2209–2218 (2007).

[CrossRef]

Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]
[PubMed]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrary oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

V. S. C. M. Rao, Gupta, and S. Dutta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A Pure Appl. Opt. 7, 279–285 (2005).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphology-dependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located circular inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242(2002).

[CrossRef]

P. T. Leung, S. W. Ng, and K. M. Pang, “Morphology-dependent resonances in dielectric spheres with many tiny inclusions,” Opt. Lett. 27, 1749–1751 (2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

R. Schuh and T. Wriedt, “Computer programs for light scattering by particles with inclusions,” J. Quant. Spectrosc. Radiat. Transfer 70, 715–723 (2001).

[CrossRef]

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]
[PubMed]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112(1996).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542(1996).

[CrossRef]
[PubMed]

G. Gouesbet, “Higher-order descriptions of Gaussian beams,” J. Opt. 27, 35–50 (1996).

[CrossRef]

F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484–493 (1994).

[CrossRef]
[PubMed]

K. A. Fuller, “Morphology-dependent resonances in eccentrically stratified sphere,” Opt. Lett. 19, 1272–1274 (1994).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gmn in the generalized Lorenz–Mie theory using finite series,” J. Opt. 19, 35 (1988).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatter in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A (Amsterdam) 137, 209–241 (1986).

[CrossRef]

J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. A 69, 1359–1366 (1979).

[CrossRef]

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Quart. Appl. Math. 20, 33–44 (1962).

S. Stein, “Addition theorems for spherical wave functions,” Quart. Appl. Math. 19, 15–24 (1961).

G. Mie, “Beiträge zur optik trüben medien speziell kolloidaler metalösungen,” Ann. Phys. 25, 377–452 (1908).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods, Advanced Series in Applied Physics (World Scientific, 1990), Vol. 2.

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

S. Saengkaew, G. Godard, J. B. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).

[CrossRef]

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A (Amsterdam) 137, 209–241 (1986).

[CrossRef]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112(1996).

[CrossRef]

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Quart. Appl. Math. 20, 33–44 (1962).

V. S. C. M. Rao, Gupta, and S. Dutta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A Pure Appl. Opt. 7, 279–285 (2005).

[CrossRef]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

A. A. Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008).

[CrossRef]

J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. A 69, 1359–1366 (1979).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

S. Saengkaew, G. Godard, J. B. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates,” Opt. Commun. 283, 517–521(2010).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrary oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphology-dependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located circular inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242(2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, “Higher-order descriptions of Gaussian beams,” J. Opt. 27, 35–50 (1996).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542(1996).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gmn in the generalized Lorenz–Mie theory using finite series,” J. Opt. 19, 35 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatter in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. (to be published).

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

S. Saengkaew, G. Godard, J. B. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrary oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphology-dependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located circular inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242(2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542(1996).

[CrossRef]
[PubMed]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gmn in the generalized Lorenz–Mie theory using finite series,” J. Opt. 19, 35 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatter in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. (to be published).

V. S. C. M. Rao, Gupta, and S. Dutta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A Pure Appl. Opt. 7, 279–285 (2005).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]
[PubMed]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A Pure Appl. Opt. 11, 015705 (2009).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008).

[CrossRef]

Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]
[PubMed]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

S. M. Hasheminejad and Y. Mirzaei, “Exact 3D elasticity solution for free vibrations of eccentric hollow sphere,” J. Sound Vib. (to be published).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods, Advanced Series in Applied Physics (World Scientific, 1990), Vol. 2.

[CrossRef]

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

J. A. Lock, “An improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. A. Lock and E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1552 (1991).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. (to be published).

D. W. Mackowski, “Analysis of radiative scattering from multiple sphere configurations,” Proc. R. Soc. Lond. 433, 599–614 (1991).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gmn in the generalized Lorenz–Mie theory using finite series,” J. Opt. 19, 35 (1988).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatter in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphology-dependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located circular inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242(2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Mie, “Beiträge zur optik trüben medien speziell kolloidaler metalösungen,” Ann. Phys. 25, 377–452 (1908).

[CrossRef]

S. M. Hasheminejad and Y. Mirzaei, “Exact 3D elasticity solution for free vibrations of eccentric hollow sphere,” J. Sound Vib. (to be published).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112(1996).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995).

[CrossRef]

V. S. C. M. Rao, Gupta, and S. Dutta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A Pure Appl. Opt. 7, 279–285 (2005).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A Pure Appl. Opt. 11, 015705 (2009).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrary oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542(1996).

[CrossRef]
[PubMed]

N. Riefler, R. Schuh, and T. Wriedt, “Investigation of a measurement technique to estimate concentration and size of inclusions in droplets,” Meas. Sci. Technol. 18, 2209–2218 (2007).

[CrossRef]

A. A. Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008).

[CrossRef]

A. A. Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008).

[CrossRef]

S. Saengkaew, G. Godard, J. B. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

N. Riefler, R. Schuh, and T. Wriedt, “Investigation of a measurement technique to estimate concentration and size of inclusions in droplets,” Meas. Sci. Technol. 18, 2209–2218 (2007).

[CrossRef]

R. Schuh and T. Wriedt, “Computer programs for light scattering by particles with inclusions,” J. Quant. Spectrosc. Radiat. Transfer 70, 715–723 (2001).

[CrossRef]

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

A. A. Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008).

[CrossRef]

S. Stein, “Addition theorems for spherical wave functions,” Quart. Appl. Math. 19, 15–24 (1961).

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

A. A. Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008).

[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. A 69, 1359–1366 (1979).

[CrossRef]

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112(1996).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995).

[CrossRef]

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A (Amsterdam) 137, 209–241 (1986).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. (to be published).

N. Riefler, R. Schuh, and T. Wriedt, “Investigation of a measurement technique to estimate concentration and size of inclusions in droplets,” Meas. Sci. Technol. 18, 2209–2218 (2007).

[CrossRef]

R. Schuh and T. Wriedt, “Computer programs for light scattering by particles with inclusions,” J. Quant. Spectrosc. Radiat. Transfer 70, 715–723 (2001).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]
[PubMed]

T. Wriedt, “The website maintained by Thomas Wriedt,” http://www.scattport.org.

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A Pure Appl. Opt. 11, 015705 (2009).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

H. Y. Zhang and Y. P. Han, “Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients,” J. Opt. Soc. Am. B 25, 255–260 (2008).

[CrossRef]

Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]
[PubMed]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

G. Mie, “Beiträge zur optik trüben medien speziell kolloidaler metalösungen,” Ann. Phys. 25, 377–452 (1908).

[CrossRef]

F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484–493 (1994).

[CrossRef]
[PubMed]

A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz–Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]
[PubMed]

J. A. Lock, “An improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, “Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz–Mie theory,” Appl. Opt. 35, 1537–1542(1996).

[CrossRef]
[PubMed]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]
[PubMed]

L. Méès, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).

[CrossRef]

G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. II. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]
[PubMed]

A. A. Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008).

[CrossRef]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112(1996).

[CrossRef]

S. Saengkaew, G. Godard, J. B. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatter in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gmn in the generalized Lorenz–Mie theory using finite series,” J. Opt. 19, 35 (1988).

[CrossRef]

G. Gouesbet, “Higher-order descriptions of Gaussian beams,” J. Opt. 27, 35–50 (1996).

[CrossRef]

V. S. C. M. Rao, Gupta, and S. Dutta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A Pure Appl. Opt. 7, 279–285 (2005).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A Pure Appl. Opt. 11, 015705 (2009).

[CrossRef]

J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. A 69, 1359–1366 (1979).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. A. Lock and E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1552 (1991).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995).

[CrossRef]

F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrary oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

[CrossRef]

G. Gouesbet and L. Méès, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

R. Schuh and T. Wriedt, “Computer programs for light scattering by particles with inclusions,” J. Quant. Spectrosc. Radiat. Transfer 70, 715–723 (2001).

[CrossRef]

J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009).

[CrossRef]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

N. Riefler, R. Schuh, and T. Wriedt, “Investigation of a measurement technique to estimate concentration and size of inclusions in droplets,” Meas. Sci. Technol. 18, 2209–2218 (2007).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser,” Opt. Commun. 282, 4189–4193 (2009).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Morphology-dependent resonances and/or whispering gallery modes for a two-dimensional dielectric cavity with an eccentrically located circular inclusion, a Hamiltonian point of view with Hamiltonian (optical) chaos,” Opt. Commun. 201, 223–242(2002).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates,” Opt. Commun. 283, 517–521(2010).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A (Amsterdam) 137, 209–241 (1986).

[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering from multiple sphere configurations,” Proc. R. Soc. Lond. 433, 599–614 (1991).

[CrossRef]

S. Stein, “Addition theorems for spherical wave functions,” Quart. Appl. Math. 19, 15–24 (1961).

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Quart. Appl. Math. 20, 33–44 (1962).

T. Wriedt, “The website maintained by Thomas Wriedt,” http://www.scattport.org.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods, Advanced Series in Applied Physics (World Scientific, 1990), Vol. 2.

[CrossRef]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

S. M. Hasheminejad and Y. Mirzaei, “Exact 3D elasticity solution for free vibrations of eccentric hollow sphere,” J. Sound Vib. (to be published).

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. (to be published).