Abstract

A new broadband terahertz circular polarizer with a double-helix structure is proposed in this paper. Furthermore, we systematically simulated the performance of single- and double-helix circular polarizers. Our numerical simulation results show that the function regions of double-helical metamaterials are about 50% broader than those of the single-helical metamaterials in terahertz. We also analyzed the dependence of the performance of the single- and double-helix metamaterials on different structure parameters. Following the antenna theory and the metal wire grating theory, proper explanations were given to interpret the changes of performance with various structure parameters and the difference between the single and double helix.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem. 48, 357–386 (1997).
    [CrossRef] [PubMed]
  2. P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994).
    [CrossRef] [PubMed]
  3. P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
    [CrossRef] [PubMed]
  4. T. B. Freedman, N. Ragunathan, and S. Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131–149 (1994).
    [CrossRef] [PubMed]
  5. J. McCann, A. Rauk, G. V. Shustov, H. Wieser, and D. Yang, “Electronic and vibrational circular dichroism of model β-lactams: 3-methyl- and 4-methylazetidin-2-one,” Appl. Spectrosc. 50, 630–641 (1996).
    [CrossRef]
  6. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
    [CrossRef] [PubMed]
  7. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
    [CrossRef] [PubMed]
  8. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
    [CrossRef] [PubMed]
  9. Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
    [CrossRef]
  10. R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. 44, L676–L678 (2005).
    [CrossRef]
  11. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  12. J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
    [CrossRef]
  13. J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).
  14. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
    [CrossRef]
  15. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  16. J. D. Kraus and R. J. Marhefka, Antennas: for All Applications, 3rd ed. (McGraw-Hill, 2003).
  17. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997).
  18. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: anumerical parameter study,” Opt. Express 18, 1059–1069 (2010).
    [CrossRef] [PubMed]
  19. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6, 1023–1028 (1967).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

2006 (3)

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. 44, L676–L678 (2005).
[CrossRef]

2002 (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

1999 (1)

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

1997 (1)

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem. 48, 357–386 (1997).
[CrossRef] [PubMed]

1996 (2)

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
[CrossRef] [PubMed]

J. McCann, A. Rauk, G. V. Shustov, H. Wieser, and D. Yang, “Electronic and vibrational circular dichroism of model β-lactams: 3-methyl- and 4-methylazetidin-2-one,” Appl. Spectrosc. 50, 630–641 (1996).
[CrossRef]

1994 (4)

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

T. B. Freedman, N. Ragunathan, and S. Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131–149 (1994).
[CrossRef] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994).
[CrossRef] [PubMed]

1967 (1)

Ahn, Y. H.

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Alexander, S.

T. B. Freedman, N. Ragunathan, and S. Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131–149 (1994).
[CrossRef] [PubMed]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Auton, J. P.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997).

Baumruk, V.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bitto, E.

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994).
[CrossRef] [PubMed]

Burger, S.

Chen, Q.

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Fabian, H.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
[CrossRef] [PubMed]

Freedman, T. B.

T. B. Freedman, N. Ragunathan, and S. Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131–149 (1994).
[CrossRef] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: anumerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Hangyo, M.

Harms, P.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

Hattori, R.

Hirota, Y.

Janota, V.

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994).
[CrossRef] [PubMed]

Jeoung, S. C.

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Kang, J. H.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Keiderling, T. A.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
[CrossRef] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994).
[CrossRef] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Ko, W.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

Kraus, J. D.

J. D. Kraus and R. J. Marhefka, Antennas: for All Applications, 3rd ed. (McGraw-Hill, 2003).

Lee, J. W.

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Lienau, C.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: anumerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Marhefka, R. J.

J. D. Kraus and R. J. Marhefka, Antennas: for All Applications, 3rd ed. (McGraw-Hill, 2003).

McCann, J.

Mittra, R.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

Murakami, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

Nafie, L. A.

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem. 48, 357–386 (1997).
[CrossRef] [PubMed]

Nishimura, H.

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. 44, L676–L678 (2005).
[CrossRef]

Ohtake, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

Pancoska, P.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
[CrossRef] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994).
[CrossRef] [PubMed]

Park, D. J.

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Park, Q.-H.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Ragunathan, N.

T. B. Freedman, N. Ragunathan, and S. Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131–149 (1994).
[CrossRef] [PubMed]

Rauk, A.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Sarukura, N.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

Sasakawa, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

Sato, T.

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. 44, L676–L678 (2005).
[CrossRef]

Seo, M. A.

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Shimano, R.

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. 44, L676–L678 (2005).
[CrossRef]

Shustov, G. V.

Sohn, J. Y.

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Tamura, A.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

Tani, M.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Tominaga, K.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Wegener, M.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: anumerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wieser, H.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Yamamoto, K.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

Yang, D.

Yoder, G.

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
[CrossRef] [PubMed]

Zhang, X.-C.

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem. 48, 357–386 (1997).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. Chen and X.-C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, C. Lienau, J. H. Kang, and Q.-H. Park, “Fabry-Perot effects in THz time-domain spectroscopy of plasmonic bandgap sturctures,” Appl. Phys. Lett. 88, 071114 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Biochemistry (1)

P. Pancoska, H. Fabian, G. Yoder, V. Baumruk, and T. A. Keiderling, “Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example,” Biochemistry 35, 13094–13106 (1996).
[CrossRef] [PubMed]

Biophys. J. (1)

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, “Terahertz time-domain spectroscopy of amino acids and polypeptides,” Biophys. J. , 89, L22–L24 (2005).
[CrossRef] [PubMed]

Faraday Discuss. (2)

T. B. Freedman, N. Ragunathan, and S. Alexander, “Vibrational circular dichroism in ephedra molecules. Experimental measurement and ab initio calculation,” Faraday Discuss. 99, 131–149 (1994).
[CrossRef] [PubMed]

P. Pancoska, E. Bitto, V. Janota, and T. A. Keiderling, “Quantitative analysis of vibrational circular dichroism spectra of proteins. Problems and perspectives,” Faraday Discuss. 99, 287–310 (1994).
[CrossRef] [PubMed]

IEEE Trans. Antennas Propag. (1)

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Korean Phys. Soc. (1)

J. W. Lee, M. A. Seo, J. Y. Sohn, D. J. Park, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Q.-H. Park, “Impedance matching plasmonic metamaterials to vacuum,” J. Korean Phys. Soc. 48, 103–107 (2006).

Jpn. J. Appl. Phys. (1)

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. 44, L676–L678 (2005).
[CrossRef]

Opt. Express (2)

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002).
[CrossRef] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Other (2)

J. D. Kraus and R. J. Marhefka, Antennas: for All Applications, 3rd ed. (McGraw-Hill, 2003).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the helical circular polarizer used in numerical simulations.

Fig. 2
Fig. 2

Parameters of the helix structures.

Fig. 3
Fig. 3

Optical performance of polarizers with different numbers of helix periods.

Fig. 4
Fig. 4

Optical performance of polarizers with different HH.

Fig. 5
Fig. 5

Optical performance of polarizers with different RH.

Fig. 6
Fig. 6

Optical performance of polarizers with different RW.

Fig. 7
Fig. 7

Optical performance of polarizers with different SH.

Tables (5)

Tables Icon

Table 1 Comparison of the Function Regions between NH = 1 and NH = 2

Tables Icon

Table 2 Comparison of the Function Regions between HH = 30 μm and HH = 40 μm

Tables Icon

Table 3 Comparison of the Function Regions between RH = 6.5 μm and RH = 8.5 μm

Tables Icon

Table 4 Comparison of the Function Regions between RW = 2 μm and RW = 4 μm

Tables Icon

Table 5 Comparison of the Function Regions between SH = 35 μm and SH = 40 μm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C = k · λ 2 n k = n , n + 1 , , 2 n ,
C = ( 2 π · RH ) 2 + HH 2 .

Metrics