Abstract

The availability of sophisticated and low-cost hardware on a single chip, for example, CMOS cameras, CPU, DSP, processors and communication transceivers, optics, microfluidics, and micromechanics, has fostered the development of system-on-chip (SoC) technology, such as lab-on-chip or wireless multimedia sensor networks (WMSNs). WMSNs are networks of wirelessly interconnected devices on a chip that are able to ubiquitously retrieve multimedia content such as video from the environment and transfer it to a central location for additional processing. In this paper, we study WMSNs that include an optical wireless communication transceiver that uses light to transmit the information. One of the primary challenges in SoC design is to attain adequate resources like energy harvesting using solar cells in addition to imaging and communication capabilities, all within stringent spatial limitations while maximizing system performances. There is an inevitable trade-off between enhancing the imaging resolution and the expense of reducing communication capacity and energy harvesting capabilities, on one hand, and increasing the communication or the solar cell size to the detriment of the imaging resolution, on the other hand. We study these trade-offs, derive a mathematical model to maximize the resolution of the imaging system, and present a numerical example that demonstrates maximum imaging resolution. Our results indicate that an eighth-order polynomial with only two constants provides the required area allocation between the different functionalities.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor networks: A survey,” IEEE Wireless Commun. Mag. 14, 32–39 (2007).
    [CrossRef]
  2. G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks 7, 537–568 (2009).
    [CrossRef]
  3. I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Comput. Netw. 51, 921–960 (2007).
    [CrossRef]
  4. A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
    [CrossRef]
  5. B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
    [CrossRef]
  6. D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
    [CrossRef]
  7. D. J. Barnhart, T. Vladimirova, A. M. Baker, and M. N. Sweeting, “A low-cost femtosatellite to enable distributed space missions,” Acta Astronaut. 64, 1123–1143 (2009).
    [CrossRef]
  8. S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A 26, 530–539 (2009).
    [CrossRef]
  9. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
    [CrossRef] [PubMed]
  10. A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
    [CrossRef] [PubMed]
  11. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
    [CrossRef] [PubMed]
  12. S. Arnon, “Network of sensors: acquisition probability,” J. Opt. Soc. Am. A 24, 2758–2765 (2007).
    [CrossRef]
  13. S. Arnon and D. Kedar, “Sensing and communication trade-offs in picosatellite formation flying missions,” J. Opt. Soc. Am. A 26, 2128–2133 (2009).
    [CrossRef]
  14. R. M. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).
  15. D. Kedar and S. Arnon, “Second generation laser firefly clusters: an improved scheme for distributed sensing in the atmosphere,” Appl. Opt. 44, 984–992 (2005).
    [CrossRef] [PubMed]
  16. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18, 13655–13660 (2010).
    [CrossRef] [PubMed]
  17. S. Arnon, “Deriving an upper bound on the average operation time of a wireless sensor network,” IEEE Commun. Lett. 9, 154–156 (2005).
    [CrossRef]
  18. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
    [CrossRef]
  19. K. Martin, “Photonic crystal lasers: On-chip beam steering,” Nat. Photonics 4, 411–412 (2010).
    [CrossRef]
  20. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).
    [CrossRef] [PubMed]
  21. A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. (Bellingham) 42, 2015–2024 (2003).
    [CrossRef]
  22. A. Goldsmith, Wireless Communications (Cambridge University Press, 2005).
  23. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication (McGraw-Hill, 1986).
  24. S. Verdú, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf. Theory 48, 1319–1343 (2002).
    [CrossRef]
  25. L. Yang and G. B. Giannakis, “Ultra-wideband communications: An idea whose time has come,” IEEE Signal Process. Mag. 21, 26–54 (2004).
    [CrossRef]
  26. J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges: Mobile networking for ‘smart dust’,” J. Commun. Network 2, 188–196 (2000).

2010

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
[CrossRef] [PubMed]

A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
[CrossRef] [PubMed]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18, 13655–13660 (2010).
[CrossRef] [PubMed]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

K. Martin, “Photonic crystal lasers: On-chip beam steering,” Nat. Photonics 4, 411–412 (2010).
[CrossRef]

2009

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).
[CrossRef] [PubMed]

S. Arnon and D. Kedar, “Sensing and communication trade-offs in picosatellite formation flying missions,” J. Opt. Soc. Am. A 26, 2128–2133 (2009).
[CrossRef]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
[CrossRef] [PubMed]

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks 7, 537–568 (2009).
[CrossRef]

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

D. J. Barnhart, T. Vladimirova, A. M. Baker, and M. N. Sweeting, “A low-cost femtosatellite to enable distributed space missions,” Acta Astronaut. 64, 1123–1143 (2009).
[CrossRef]

S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A 26, 530–539 (2009).
[CrossRef]

2007

I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Comput. Netw. 51, 921–960 (2007).
[CrossRef]

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
[CrossRef]

S. Arnon, “Network of sensors: acquisition probability,” J. Opt. Soc. Am. A 24, 2758–2765 (2007).
[CrossRef]

I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor networks: A survey,” IEEE Wireless Commun. Mag. 14, 32–39 (2007).
[CrossRef]

2005

D. Kedar and S. Arnon, “Second generation laser firefly clusters: an improved scheme for distributed sensing in the atmosphere,” Appl. Opt. 44, 984–992 (2005).
[CrossRef] [PubMed]

S. Arnon, “Deriving an upper bound on the average operation time of a wireless sensor network,” IEEE Commun. Lett. 9, 154–156 (2005).
[CrossRef]

2004

L. Yang and G. B. Giannakis, “Ultra-wideband communications: An idea whose time has come,” IEEE Signal Process. Mag. 21, 26–54 (2004).
[CrossRef]

2003

A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. (Bellingham) 42, 2015–2024 (2003).
[CrossRef]

2002

S. Verdú, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf. Theory 48, 1319–1343 (2002).
[CrossRef]

2000

J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges: Mobile networking for ‘smart dust’,” J. Commun. Network 2, 188–196 (2000).

Abate, A. R.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
[CrossRef] [PubMed]

Akyildiz, I. F.

I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor networks: A survey,” IEEE Wireless Commun. Mag. 14, 32–39 (2007).
[CrossRef]

I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Comput. Netw. 51, 921–960 (2007).
[CrossRef]

Anastasi, G.

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks 7, 537–568 (2009).
[CrossRef]

Arnon, S.

Baets, R.

Baker, A. M.

D. J. Barnhart, T. Vladimirova, A. M. Baker, and M. N. Sweeting, “A low-cost femtosatellite to enable distributed space missions,” Acta Astronaut. 64, 1123–1143 (2009).
[CrossRef]

Barnhart, D. J.

D. J. Barnhart, T. Vladimirova, A. M. Baker, and M. N. Sweeting, “A low-cost femtosatellite to enable distributed space missions,” Acta Astronaut. 64, 1123–1143 (2009).
[CrossRef]

Bellew, C. L.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Benini, L.

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
[CrossRef]

Bogaerts, W.

Boni, A.

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
[CrossRef]

Boser, B. E.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Carlson, A. B.

A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication (McGraw-Hill, 1986).

Chediak, J. A.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Chowdhury, K. R.

I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Comput. Netw. 51, 921–960 (2007).
[CrossRef]

Chowdury, K. R.

I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor networks: A survey,” IEEE Wireless Commun. Mag. 14, 32–39 (2007).
[CrossRef]

Collins, S.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

Conti, M.

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks 7, 537–568 (2009).
[CrossRef]

Coskun, A. F.

A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
[CrossRef] [PubMed]

Crozier, K. B.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
[CrossRef] [PubMed]

Di Francesco, M.

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks 7, 537–568 (2009).
[CrossRef]

Elston, S. J.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

Erlinger, A.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
[CrossRef] [PubMed]

Faulkner, G. E.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).

Giannakis, G. B.

L. Yang and G. B. Giannakis, “Ultra-wideband communications: An idea whose time has come,” IEEE Signal Process. Mag. 21, 26–54 (2004).
[CrossRef]

Goldsmith, A.

A. Goldsmith, Wireless Communications (Cambridge University Press, 2005).

Houdré, R.

Iwahashi, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

Jágerská, J.

Kahn, J. M.

J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges: Mobile networking for ‘smart dust’,” J. Commun. Network 2, 188–196 (2000).

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Karp, S.

R. M. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).

Katz, R. H.

J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges: Mobile networking for ‘smart dust’,” J. Commun. Network 2, 188–196 (2000).

Kedar, D.

Kerhet, A.

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
[CrossRef]

Kunishi, W.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

Kurosaka, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

Le Thomas, N.

Leibowitz, B. S.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Leonardi, F.

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
[CrossRef]

Liang, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

Liu, J. J.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

Magno, M.

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
[CrossRef]

Martin, K.

K. Martin, “Photonic crystal lasers: On-chip beam steering,” Nat. Photonics 4, 411–412 (2010).
[CrossRef]

Melodia, T.

I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Comput. Netw. 51, 921–960 (2007).
[CrossRef]

I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor networks: A survey,” IEEE Wireless Commun. Mag. 14, 32–39 (2007).
[CrossRef]

Miyai, E.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

Noda, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

O’Brien, D. C.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

Ohnishi, D.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

Ozcan, A.

A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
[CrossRef] [PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
[CrossRef] [PubMed]

Passarella, A.

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks 7, 537–568 (2009).
[CrossRef]

Pister, K. S. J.

J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges: Mobile networking for ‘smart dust’,” J. Commun. Network 2, 188–196 (2000).

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Polishuk, A.

A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. (Bellingham) 42, 2015–2024 (2003).
[CrossRef]

Rogier, H.

Sakai, K.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

Schonbrun, E.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
[CrossRef] [PubMed]

Scott, M. D.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Seo, S.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
[CrossRef] [PubMed]

Sivathasan, S.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

Steinvurzel, P. E.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
[CrossRef] [PubMed]

Su, T. W.

A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
[CrossRef] [PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
[CrossRef] [PubMed]

Sweeting, M. N.

D. J. Barnhart, T. Vladimirova, A. M. Baker, and M. N. Sweeting, “A low-cost femtosatellite to enable distributed space missions,” Acta Astronaut. 64, 1123–1143 (2009).
[CrossRef]

Tseng, D. K.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
[CrossRef] [PubMed]

Van Acoleyen, K.

Verdú, S.

S. Verdú, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf. Theory 48, 1319–1343 (2002).
[CrossRef]

Vladimirova, T.

D. J. Barnhart, T. Vladimirova, A. M. Baker, and M. N. Sweeting, “A low-cost femtosatellite to enable distributed space missions,” Acta Astronaut. 64, 1123–1143 (2009).
[CrossRef]

Warneke, B. A.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Weitz, D. A.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
[CrossRef] [PubMed]

Yang, L.

L. Yang and G. B. Giannakis, “Ultra-wideband communications: An idea whose time has come,” IEEE Signal Process. Mag. 21, 26–54 (2004).
[CrossRef]

Yuan, W. W.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

Zhou, L.

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

Acta Astronaut.

D. J. Barnhart, T. Vladimirova, A. M. Baker, and M. N. Sweeting, “A low-cost femtosatellite to enable distributed space missions,” Acta Astronaut. 64, 1123–1143 (2009).
[CrossRef]

Ad Hoc Networks

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor networks: A survey,” Ad Hoc Networks 7, 537–568 (2009).
[CrossRef]

Appl. Opt.

Comput. Netw.

I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Comput. Netw. 51, 921–960 (2007).
[CrossRef]

IEEE Commun. Lett.

S. Arnon, “Deriving an upper bound on the average operation time of a wireless sensor network,” IEEE Commun. Lett. 9, 154–156 (2005).
[CrossRef]

IEEE J. Sel. Areas Commun.

D. C. O’Brien, J. J. Liu, G. E. Faulkner, S. Sivathasan, W. W. Yuan, S. Collins, and S. J. Elston, “Design and implementation of optical wireless communications with optically powered smart dust motes,” IEEE J. Sel. Areas Commun. 27, 1646–1653 (2009).
[CrossRef]

IEEE Signal Process. Mag.

L. Yang and G. B. Giannakis, “Ultra-wideband communications: An idea whose time has come,” IEEE Signal Process. Mag. 21, 26–54 (2004).
[CrossRef]

IEEE Trans. Inf. Theory

S. Verdú, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf. Theory 48, 1319–1343 (2002).
[CrossRef]

IEEE Wireless Commun. Mag.

I. F. Akyildiz, T. Melodia, and K. R. Chowdury, “Wireless multimedia sensor networks: A survey,” IEEE Wireless Commun. Mag. 14, 32–39 (2007).
[CrossRef]

J. Commun. Network

J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges: Mobile networking for ‘smart dust’,” J. Commun. Network 2, 188–196 (2000).

J. Opt. Soc. Am. A

J. Real-Time Image Process.

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini, “A low-power wireless video sensor node for distributed object detection,” J. Real-Time Image Process. 2, 331–342 (2007).
[CrossRef]

Lab Chip

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10, 852–856 (2010).
[CrossRef] [PubMed]

A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
[CrossRef] [PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9, 777–787 (2009).
[CrossRef] [PubMed]

Nat. Photonics

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[CrossRef]

K. Martin, “Photonic crystal lasers: On-chip beam steering,” Nat. Photonics 4, 411–412 (2010).
[CrossRef]

Opt. Eng. (Bellingham)

A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites using an optical phased array antenna,” Opt. Eng. (Bellingham) 42, 2015–2024 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. M. Gagliardi and S. Karp, Optical Communications (Wiley, 1995).

B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks,” in Proceedings of IEEE Sensors (IEEE, 2002), pp. 1510–1515.
[CrossRef]

A. Goldsmith, Wireless Communications (Cambridge University Press, 2005).

A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication (McGraw-Hill, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The sensor scheme.

Fig. 2
Fig. 2

The imaging resolution as a function of the solar cell size.

Fig. 3
Fig. 3

The communication data rate as a function of the solar cell size.

Fig. 4
Fig. 4

Graph showing the solar cell area and the imaging aperture as a function of the communication aperture.

Tables (1)

Tables Icon

Table 1 Parameters Used for the Numerical Calculation

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

D sen 2 + D com 2 + D sol 2 = D 2 ,
Δ l = 1.22 f λ sen D sen ,
R data = C sen ( FOV 1.22 ) 2 F R Q ( D sen λ sen ) 2 ,
SNR = D com 4 P T 2 ( R π η T η R A rec ) 2 N o B ( 2 Z λ ) 4 ,
P T = η sol I sol D sol 2 ,
C C = B log 2 ( 1 + SNR ) .
C C = lim B ( B   SNR   log 2 ( e ) ) = 1.44 B   SNR = 1.44 D com 4 P T 2 ( R π η T η R A rec ) 2 N o ( 2 Z λ ) 4 L p .
R data 1.44 D com 4 P T 2 ( R π η T η R A rec ) 2 N o ( 2 Z λ ) 4 .
C sen ( FOV 1.22 ) 2 F R Q ( D sen λ sen ) 2 = ( 1.44 D com 4 ( η sol I sol D sol 2 ) 2 ( R π η T η R A rec ) 2 N o ( 2 Z λ ) 4 ) .
( D 2 D com 2 D sol 2 ) ( FOV 1.22 λ sen ) 2 C sen F R Q = D com 4 D sol 4 ( 1.44 ( R π η T η R A rec η sol I sol ) 2 N o ( 2 Z λ ) 4 ) .
U 2 V 2 K 1 + ( U + V ) K 2 D 2 K 2 = 0 ,
( D 2 V W ) 2 V 2 K 1 + ( D 2 V W + V ) K 2 D 2 K 2 = 0 ,
2 V 2 K 1 V ( D 2 V W ) V 2 K 1 + ( D 2 V W ) 2 V V 2 K 1 W V K 2 = 0.
2 V 2 K 1 ( 1 W V ) V 2 K 1 + 2 ( D 2 V W ) 2 V K 1 W V K 2 = 0.
2 V 4 K 1 2 + 2 ( D 2 V W ) 2 V K 1 = 0.
V 3 K 1 + ( D 2 V W ) 2 = 0.
V 3 K 1 = U 2 .
V 4 K 1 2 + ( V 0.5 K 1 0.5 + 1 ) K 2 D 2 K 2 = 0.
U opt = V opt 3 K 1 ,
W opt = D 2 V opt V opt 3 K 1 .
n 2 = ( FOV 1.22 λ sen ) 2 ( D 2 V opt V opt 3 K 1 ) ,
R data = C sen ( FOV 1.22 λ sen ) 2 ( D 2 V opt V opt 3 K 1 ) F R Q = C sen n 2 F R Q .

Metrics