Abstract

The availability of sophisticated and low-cost hardware on a single chip, for example, CMOS cameras, CPU, DSP, processors and communication transceivers, optics, microfluidics, and micromechanics, has fostered the development of system-on-chip (SoC) technology, such as lab-on-chip or wireless multimedia sensor networks (WMSNs). WMSNs are networks of wirelessly interconnected devices on a chip that are able to ubiquitously retrieve multimedia content such as video from the environment and transfer it to a central location for additional processing. In this paper, we study WMSNs that include an optical wireless communication transceiver that uses light to transmit the information. One of the primary challenges in SoC design is to attain adequate resources like energy harvesting using solar cells in addition to imaging and communication capabilities, all within stringent spatial limitations while maximizing system performances. There is an inevitable trade-off between enhancing the imaging resolution and the expense of reducing communication capacity and energy harvesting capabilities, on one hand, and increasing the communication or the solar cell size to the detriment of the imaging resolution, on the other hand. We study these trade-offs, derive a mathematical model to maximize the resolution of the imaging system, and present a numerical example that demonstrates maximum imaging resolution. Our results indicate that an eighth-order polynomial with only two constants provides the required area allocation between the different functionalities.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription