Abstract

Concentrators with arbitrary geometries are designed based on the numerical solution of Laplace’s equation, with which the material parameters can be independently obtained without any knowledge of the corresponding coordinate transformation. Results show that the concentrator designed using the numerical method has the same scattering and concentrating properties as that designed using the analytical method, except for a slight difference in the stretching region, which, however does not influence the design of the concentrator. The method developed in this paper is general and flexible for designing arbitrary concentrators. The validity of such a method and the concentrating effects are confirmed by full-wave simulations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef] [PubMed]
  4. U. Leonhardt and T. Tyc, “Broadband invisibility by non-euclidean cloaking,” Science 323, 110–112 (2009).
    [CrossRef]
  5. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [CrossRef] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
    [CrossRef]
  7. P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
    [CrossRef]
  8. H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Mater. 9, 387–396 (2010).
    [CrossRef]
  9. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
    [CrossRef]
  10. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [CrossRef] [PubMed]
  11. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
    [CrossRef] [PubMed]
  12. W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12, 26–33 (2009).
    [CrossRef]
  13. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef] [PubMed]
  14. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
    [CrossRef]
  15. J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17, 19656–19661 (2009).
    [CrossRef] [PubMed]
  16. H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
    [CrossRef]
  17. X. Chen, Y. Fu, and N. Yuan, “Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation,” Opt. Express 17, 3581–3586 (2009).
    [CrossRef] [PubMed]
  18. J. Hu, X. Zhou, and G. Hu, “Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation,” Opt. Express 17, 1308–1320 (2009).
    [CrossRef] [PubMed]
  19. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
    [CrossRef] [PubMed]

2010 (1)

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Mater. 9, 387–396 (2010).
[CrossRef]

2009 (9)

U. Leonhardt and T. Tyc, “Broadband invisibility by non-euclidean cloaking,” Science 323, 110–112 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12, 26–33 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

J. Hu, X. Zhou, and G. Hu, “Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation,” Opt. Express 17, 1308–1320 (2009).
[CrossRef] [PubMed]

X. Chen, Y. Fu, and N. Yuan, “Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation,” Opt. Express 17, 3581–3586 (2009).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17, 19656–19661 (2009).
[CrossRef] [PubMed]

2008 (5)

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

2006 (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

Alitalo, P.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Catchpole, K. R.

Chan, C. T.

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Mater. 9, 387–396 (2010).
[CrossRef]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Chen, H. Y.

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Mater. 9, 387–396 (2010).
[CrossRef]

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Chen, X.

Cheng, Q.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12, 26–33 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12, 26–33 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Fu, Y.

Han, D. Z.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Hu, G.

Hu, J.

Huang, M.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Jiang, W. X.

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12, 26–33 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Lai, Y.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-euclidean cloaking,” Science 323, 110–112 (2009).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Ma, H.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Ng, J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

Peng, J. H.

Polman, A.

Qu, S.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

Sheng, P.

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Mater. 9, 387–396 (2010).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Tretyakov, S.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-euclidean cloaking,” Science 323, 110–112 (2009).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Wang, J.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Xiao, J. J.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Xiao, Z.

Xu, Z.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Yang, C. F.

Yang, J. J.

Yang, X. M.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Yuan, N.

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, Z. Q.

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Zhou, X.

Appl. Phys. Lett. (1)

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Mater. Today (2)

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12, 26–33 (2009).
[CrossRef]

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009).
[CrossRef]

Nature Mater. (2)

H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nature Mater. 9, 387–396 (2010).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Opt. Express (5)

Photonics Nanostruct. Fundam. Appl. (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Phys. Rev. E (1)

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008).
[CrossRef] [PubMed]

Science (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-euclidean cloaking,” Science 323, 110–112 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme for the construction of an arbitrary concentrator.

Fig. 2
Fig. 2

(a) Electric field distribution in the vicinity of the circular cylindrical concentrator based on analytical solution of Laplace’s equation. (b) The power flow distribution corresponding to (a). Gray lines indicate the direction of the power flow.

Fig. 3
Fig. 3

(a) Electric field distribution in the vicinity of the circular cylindrical concentrator based on numerical solution of the Laplace’s equation. (b) The power flow distribution corresponding to (a).

Fig. 4
Fig. 4

Power flow distribution along x axis.

Fig. 5
Fig. 5

(a) The electric field and (b) the power flow distributions in the vicinity of the arbitrary shaped concentrator. The direction of the power is indicated by the gray lines shown in (b).

Fig. 6
Fig. 6

Power flow distribution in the vicinity of the concentrator under cylindrical wave irradiation. The line source is located at (−0.35,0), (0,0.35), and (−0.35,−0.35) for (a), (b), and (c), respectively.

Fig. 7
Fig. 7

The distribution of permittivity [ ε z z = ( μ z z ) ] in the compressive region.

Fig. 8
Fig. 8

Permittivity and permeability tensors for the concentrator in the stretching region. (a) ε z z , (b) μ x x , (c) μ x y ( = μ y x ) , (d) μ y y .

Fig. 9
Fig. 9

The arbitrary shaped concentrator with separated compressive regions. (a) The electric field distribution in the vicinity of the concentrator under TE plane wave irradiation. (b) The corresponding power flow distribution of (a). (c) The electric field distribution in the vicinity of the concentrator under cylindrical wave irradiation. (d) The corresponding power flow distribution of (c).

Fig. 10
Fig. 10

The beam shifter and the beam expander. (a) The incoming beam is shifted in the negative direction of y axis. (b) The incoming beam is shifted in the positive direction of y axis. (c) The beam is expanded. (d) is the corresponding power flow of (c).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ε = A ε A T / det   A ,
μ = A μ A T / det   A ,
( 2 x 1 2 + 2 x 2 2 + 2 x 3 2 ) x i = 0 ,     i = 1 , 2 , 3 ,
U x = b = a ,     U x = c = c .
( 2 x 1 2 + 2 x 2 2 + 2 x 3 2 ) x i = 0 ,
U x = a = b ,     U x = c = c .
1 r r ( r u i r ) + 1 r 2 2 u i θ 2 + 2 u i z 2 = 0 ,
1 r r ( r r r ) = 0.
r = C 1   ln   r + C 2 = ( r 3 r 2 ) log ( r 3 / r 1 ) ( r / r 3 ) + r 3 ,
r = r 3 ( r 3 / r 1 ) [ ( r r 3 ) / ( r 3 r 2 ) ] .
λ r = d r d r = r r 3 r 2 ln r 3 r 1 ,
λ θ = r r = r ( r 3 r 2 ) log ( r 3 / r 1 ) r r 3 + r 3 ,
λ z = 1 ,
ε r = λ r λ θ λ z = 1 r 3 r 2 ln r 3 r 1 [ ( r 3 r 2 ) log ( r 3 / r 1 ) r r 3 + r 3 ] ,
ε θ = λ θ λ r λ z = r 3 r 2 ln r 3 r 2 [ ( r 3 r 2 ) log ( r 3 / r 1 ) r r 3 + r 3 ] ,
ε z = λ z λ θ λ r = ( r 3 r 2 ) [ ( r 3 r 2 ) log ( r 3 / r 1 ) r r 3 + r 3 ] r 2   ln r 3 r 1 .
ε r = ε θ = 1 ,     ε z = ( r 2 / r 1 ) 2 .

Metrics