J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010).

[CrossRef]

J. Healy and J. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms,” Opt. Lett. 35, 947–949 (2010).

[CrossRef]
[PubMed]

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288–1302 (2010).

[CrossRef]

D. Dragoman, “Classical versus complex fractional Fourier transformation,” J. Opt. Soc. Am. A 26, 274–277 (2009).

[CrossRef]

S. Baskal and Y. S. Kim, “ABCD matrices as similarity transformations of Wigner matrices and periodic systems in optics,” J. Opt. Soc. Am. A 26, 2049–2054 (2009).

[CrossRef]

F. S. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648 (2009).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Cases where the linear canonical transform of a signal has compact support or is band-limited,” Opt. Lett. 33, 228–230 (2008).

[CrossRef]
[PubMed]

H. Fan, L. Hu, and J. Wang, “Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics,” J. Opt. Soc. Am. A 25, 974–978 (2008).

[CrossRef]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007).

[CrossRef]
[PubMed]

M. J. Bastiaans and T. Alieva, “Classification of lossless first-order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053–1062 (2007).

[CrossRef]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform,” J. Opt. Soc. Am. A 24, 3135–3139 (2007).

[CrossRef]

T. Alieva and M. J. Bastiaans, “Properties of the canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

M. J. Bastiaans and T. Alieva, “Synthesis of an arbitrary ABCD system with fixed lens positions,” Opt. Lett. 31, 2414–2416 (2006).

[CrossRef]
[PubMed]

J. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23, 2494–2500 (2006).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917–927 (2005).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937 (2005).

[CrossRef]

L. L. Sanchez-Soto, J. F. Carinena, A. G. Barriuso, and J. J. Monzon, “Vector-like representation of one-dimensional scattering,” Eur. J. Phys. 26, 469–480 (2005).

[CrossRef]

A. A. Malyutin, “Complex-order fractional Fourier transforms in optical schemes with Gaussian apertures,” Quantum Electron. 34, 960–964 (2004).

[CrossRef]

S. Baskal and Y. S. Kim, “Lens optics as an optical computer for group contractions,” Phys. Rev. E 67, 056601 (2003).

[CrossRef]

E. Georgieva and Y. S. Kim, “Slide-rule-like property of Wigner’s little groups and cyclic S matrices for multilayer optics,” Phys. Rev. E 68, 026606 (2003).

[CrossRef]

A. Torre, “Linear and radial canonical transforms of fractional order,” J. Comput. Appl. Math. 153, 477–486 (2003).

[CrossRef]

U. Sümbül and H. M. Ozaktas, “Fractional free space, fractional lenses, and fractional imaging systems,” J. Opt. Soc. Am. A 20, 2033–2040 (2003).

[CrossRef]

C. Wang and B. Lü, “Implementation of complex-order Fourier transforms in complex ABCD optical systems,” Opt. Commun. 203, 61–66 (2002).

[CrossRef]

D. J. Griffiths and C. A. Steinke, “Waves in locally periodic media,” Am. J. Phys. 69, 137–154 (2001).

[CrossRef]

A. Sahin, M. A. Kutay, and H. M. Ozaktas, “Nonseparable two-dimensional fractional Fourier transform,” Appl. Opt. 37, 5444–5453 (1998).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998).

[CrossRef]

L. M. Bernardo, “Talbot self-imaging in fractional Fourier planes of real and complex orders,” Opt. Commun. 140, 195–198 (1997).

[CrossRef]

L. Onural, M. F. Erden, and H. M. Ozaktas, “Extensions to common Laplace and Fourier transforms,” IEEE Signal Process. Lett. 4, 310–312 (1997).

[CrossRef]

H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997).

[CrossRef]

L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Opt. Eng. (Bellingham) 35, 732–740 (1996).

[CrossRef]

H. M. Ozaktas, O. Arıkan, M. A. Kutay, and G. Bozdağı, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

L. M. Bernardo and O. D. D. Soares, “Optical fractional Fourier transforms with complex orders,” Appl. Opt. 35, 3163–3166 (1996).

[CrossRef]
[PubMed]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

C.-C. Shih, “Optical interpretation of a complex-order Fourier transform,” Opt. Lett. 20, 1178–1180 (1995).

[CrossRef]
[PubMed]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A Opt. 12, 743–751 (1995).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).

[CrossRef]

S. Abe and J. T. Sheridan, “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach,” J. Phys. A 27, 4179–4187 (1994).

[CrossRef]

S. Abe and J. T. Sheridan, “Optical operations on wavefunctions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994).

[CrossRef]
[PubMed]

D. W. L. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential,” Am. J. Phys. 61, 1118–1124 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Process. Mag. 9, 21–67 (1992).

[CrossRef]

C. Jung and H. Kruger, “Representation of quantum mechanical wavefunctions by complex valued extensions of classical canonical transformation generators,” J. Phys. A 15, 3509–3523 (1982).

[CrossRef]

M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).

[CrossRef]

B. Simon, “Resonances and complex scaling: A rigorous overview,” Int. J. Quantum Chem. 14, 529–542 (1978).

[CrossRef]

J. N. Bardsley, “Complex scaling: An introduction,” Int. J. Quantum Chem. 14, 343–352 (1978).

[CrossRef]

K. B. Wolf, “On self-reciprocal functions under a class of integral transforms,” J. Math. Phys. 18, 1046–1051 (1977).

[CrossRef]

K. B. Wolf, “Canonical transformations I. Complex linear transforms,” J. Math. Phys. 15, 1295–1301 (1974).

[CrossRef]

K. B. Wolf, “Canonical transformations II. Complex radial transforms,” J. Math. Phys. 15, 2102–2111 (1974).

[CrossRef]

M. Moshinsky, “Canonical transformations and quantum mechanics,” SIAM J. Appl. Math. 25, 193–212 (1973).

[CrossRef]

M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1780 (1971).

[CrossRef]

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform, part II,” Commun. Pure Appl. Math. 20, 1–101 (1967).

[CrossRef]

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform, part I,” Commun. Pure Appl. Math. 14, 187–214 (1961).

[CrossRef]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007).

[CrossRef]
[PubMed]

M. J. Bastiaans and T. Alieva, “Classification of lossless first-order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053–1062 (2007).

[CrossRef]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform,” J. Opt. Soc. Am. A 24, 3135–3139 (2007).

[CrossRef]

T. Alieva and M. J. Bastiaans, “Properties of the canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007).

[CrossRef]

M. J. Bastiaans and T. Alieva, “Synthesis of an arbitrary ABCD system with fixed lens positions,” Opt. Lett. 31, 2414–2416 (2006).

[CrossRef]
[PubMed]

J. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23, 2494–2500 (2006).

[CrossRef]

L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).

[CrossRef]

H. M. Ozaktas, O. Arıkan, M. A. Kutay, and G. Bozdağı, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

J. N. Bardsley, “Complex scaling: An introduction,” Int. J. Quantum Chem. 14, 343–352 (1978).

[CrossRef]

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform, part II,” Commun. Pure Appl. Math. 20, 1–101 (1967).

[CrossRef]

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform, part I,” Commun. Pure Appl. Math. 14, 187–214 (1961).

[CrossRef]

L. L. Sanchez-Soto, J. F. Carinena, A. G. Barriuso, and J. J. Monzon, “Vector-like representation of one-dimensional scattering,” Eur. J. Phys. 26, 469–480 (2005).

[CrossRef]

T. Alieva and M. J. Bastiaans, “Properties of the canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007).

[CrossRef]

M. J. Bastiaans and T. Alieva, “Classification of lossless first-order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053–1062 (2007).

[CrossRef]

M. J. Bastiaans and T. Alieva, “Synthesis of an arbitrary ABCD system with fixed lens positions,” Opt. Lett. 31, 2414–2416 (2006).

[CrossRef]
[PubMed]

M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).

[CrossRef]

M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).

[CrossRef]

M. J. Bastiaans, Applications of the Wigner Distribution Function in Optics, The Wigner Distribution: Theory and Applications in Signal Processing (Elsevier, 1997), pp. 375–426.

F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Process. Mag. 9, 21–67 (1992).

[CrossRef]

H. M. Ozaktas, O. Arıkan, M. A. Kutay, and G. Bozdağı, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007).

[CrossRef]
[PubMed]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform,” J. Opt. Soc. Am. A 24, 3135–3139 (2007).

[CrossRef]

J. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23, 2494–2500 (2006).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

L. L. Sanchez-Soto, J. F. Carinena, A. G. Barriuso, and J. J. Monzon, “Vector-like representation of one-dimensional scattering,” Eur. J. Phys. 26, 469–480 (2005).

[CrossRef]

L. Cohen, Time-Frequency Analysis (Prentice Hall, 1995).

B. Davies, Integral Transforms and Their Applications (Springer, 1978).

L. Onural, M. F. Erden, and H. M. Ozaktas, “Extensions to common Laplace and Fourier transforms,” IEEE Signal Process. Lett. 4, 310–312 (1997).

[CrossRef]

H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997).

[CrossRef]

E. Georgieva and Y. S. Kim, “Slide-rule-like property of Wigner’s little groups and cyclic S matrices for multilayer optics,” Phys. Rev. E 68, 026606 (2003).

[CrossRef]

D. J. Griffiths and C. A. Steinke, “Waves in locally periodic media,” Am. J. Phys. 69, 137–154 (2001).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648 (2009).

[CrossRef]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

J. J. Healy and J. T. Sheridan, “Cases where the linear canonical transform of a signal has compact support or is band-limited,” Opt. Lett. 33, 228–230 (2008).

[CrossRef]
[PubMed]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917–927 (2005).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937 (2005).

[CrossRef]

F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Process. Mag. 9, 21–67 (1992).

[CrossRef]

C. Jung and H. Kruger, “Representation of quantum mechanical wavefunctions by complex valued extensions of classical canonical transformation generators,” J. Phys. A 15, 3509–3523 (1982).

[CrossRef]

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288–1302 (2010).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

P. Kramer, M. Moshinsky, and T. H. Seligman, Complex Extensions of Canonical Transformations and Quantum Mechanics, Vol. 3 of Group Theory and Its Applications, E.M.Loebl, ed. (Academic, 1975), pp. 249–332.

C. Jung and H. Kruger, “Representation of quantum mechanical wavefunctions by complex valued extensions of classical canonical transformation generators,” J. Phys. A 15, 3509–3523 (1982).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

A. Sahin, M. A. Kutay, and H. M. Ozaktas, “Nonseparable two-dimensional fractional Fourier transform,” Appl. Opt. 37, 5444–5453 (1998).

[CrossRef]

H. M. Ozaktas, O. Arıkan, M. A. Kutay, and G. Bozdağı, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

C. Wang and B. Lü, “Implementation of complex-order Fourier transforms in complex ABCD optical systems,” Opt. Commun. 203, 61–66 (2002).

[CrossRef]

A. A. Malyutin, “Complex-order fractional Fourier transforms in optical schemes with Gaussian apertures,” Quantum Electron. 34, 960–964 (2004).

[CrossRef]

D. W. L. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential,” Am. J. Phys. 61, 1118–1124 (1993).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A Opt. 12, 743–751 (1995).

[CrossRef]

H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

L. L. Sanchez-Soto, J. F. Carinena, A. G. Barriuso, and J. J. Monzon, “Vector-like representation of one-dimensional scattering,” Eur. J. Phys. 26, 469–480 (2005).

[CrossRef]

M. Moshinsky, “Canonical transformations and quantum mechanics,” SIAM J. Appl. Math. 25, 193–212 (1973).

[CrossRef]

M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1780 (1971).

[CrossRef]

P. Kramer, M. Moshinsky, and T. H. Seligman, Complex Extensions of Canonical Transformations and Quantum Mechanics, Vol. 3 of Group Theory and Its Applications, E.M.Loebl, ed. (Academic, 1975), pp. 249–332.

F. S. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

L. Onural, M. F. Erden, and H. M. Ozaktas, “Extensions to common Laplace and Fourier transforms,” IEEE Signal Process. Lett. 4, 310–312 (1997).

[CrossRef]

H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288–1302 (2010).

[CrossRef]

F. S. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

U. Sümbül and H. M. Ozaktas, “Fractional free space, fractional lenses, and fractional imaging systems,” J. Opt. Soc. Am. A 20, 2033–2040 (2003).

[CrossRef]

A. Sahin, M. A. Kutay, and H. M. Ozaktas, “Nonseparable two-dimensional fractional Fourier transform,” Appl. Opt. 37, 5444–5453 (1998).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998).

[CrossRef]

H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997).

[CrossRef]

L. Onural, M. F. Erden, and H. M. Ozaktas, “Extensions to common Laplace and Fourier transforms,” IEEE Signal Process. Lett. 4, 310–312 (1997).

[CrossRef]

H. M. Ozaktas, O. Arıkan, M. A. Kutay, and G. Bozdağı, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A Opt. 12, 743–751 (1995).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1780 (1971).

[CrossRef]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Gyrator transform: properties and applications,” Opt. Express 15, 2190–2203 (2007).

[CrossRef]
[PubMed]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform,” J. Opt. Soc. Am. A 24, 3135–3139 (2007).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998).

[CrossRef]

A. Sahin, M. A. Kutay, and H. M. Ozaktas, “Nonseparable two-dimensional fractional Fourier transform,” Appl. Opt. 37, 5444–5453 (1998).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

L. L. Sanchez-Soto, J. F. Carinena, A. G. Barriuso, and J. J. Monzon, “Vector-like representation of one-dimensional scattering,” Eur. J. Phys. 26, 469–480 (2005).

[CrossRef]

P. Kramer, M. Moshinsky, and T. H. Seligman, Complex Extensions of Canonical Transformations and Quantum Mechanics, Vol. 3 of Group Theory and Its Applications, E.M.Loebl, ed. (Academic, 1975), pp. 249–332.

J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648 (2009).

[CrossRef]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

J. J. Healy and J. T. Sheridan, “Cases where the linear canonical transform of a signal has compact support or is band-limited,” Opt. Lett. 33, 228–230 (2008).

[CrossRef]
[PubMed]

B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937 (2005).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917–927 (2005).

[CrossRef]

S. Abe and J. T. Sheridan, “Optical operations on wavefunctions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994).

[CrossRef]
[PubMed]

S. Abe and J. T. Sheridan, “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach,” J. Phys. A 27, 4179–4187 (1994).

[CrossRef]

A. E. Siegman, Lasers (University Science Books, 1986).

B. Simon, “Resonances and complex scaling: A rigorous overview,” Int. J. Quantum Chem. 14, 529–542 (1978).

[CrossRef]

D. W. L. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential,” Am. J. Phys. 61, 1118–1124 (1993).

[CrossRef]

D. J. Griffiths and C. A. Steinke, “Waves in locally periodic media,” Am. J. Phys. 69, 137–154 (2001).

[CrossRef]

A. Torre, “Linear and radial canonical transforms of fractional order,” J. Comput. Appl. Math. 153, 477–486 (2003).

[CrossRef]

C. Wang and B. Lü, “Implementation of complex-order Fourier transforms in complex ABCD optical systems,” Opt. Commun. 203, 61–66 (2002).

[CrossRef]

K. B. Wolf, “On self-reciprocal functions under a class of integral transforms,” J. Math. Phys. 18, 1046–1051 (1977).

[CrossRef]

K. B. Wolf, “Canonical transformations I. Complex linear transforms,” J. Math. Phys. 15, 1295–1301 (1974).

[CrossRef]

K. B. Wolf, “Canonical transformations II. Complex radial transforms,” J. Math. Phys. 15, 2102–2111 (1974).

[CrossRef]

K. B. Wolf, “Construction and properties of canonical transforms,” in Integral Transforms in Science and Engineering (Plenum, 1979), Chap. 9.

D. W. L. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential,” Am. J. Phys. 61, 1118–1124 (1993).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

D. J. Griffiths and C. A. Steinke, “Waves in locally periodic media,” Am. J. Phys. 69, 137–154 (2001).

[CrossRef]

D. W. L. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential,” Am. J. Phys. 61, 1118–1124 (1993).

[CrossRef]

A. Sahin, M. A. Kutay, and H. M. Ozaktas, “Nonseparable two-dimensional fractional Fourier transform,” Appl. Opt. 37, 5444–5453 (1998).

[CrossRef]

L. M. Bernardo and O. D. D. Soares, “Optical fractional Fourier transforms with complex orders,” Appl. Opt. 35, 3163–3166 (1996).

[CrossRef]
[PubMed]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998).

[CrossRef]

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform, part I,” Commun. Pure Appl. Math. 14, 187–214 (1961).

[CrossRef]

V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform, part II,” Commun. Pure Appl. Math. 20, 1–101 (1967).

[CrossRef]

L. L. Sanchez-Soto, J. F. Carinena, A. G. Barriuso, and J. J. Monzon, “Vector-like representation of one-dimensional scattering,” Eur. J. Phys. 26, 469–480 (2005).

[CrossRef]

F. S. Oktem and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms,” IEEE Signal Process. Lett. 16, 727–730 (2009).

[CrossRef]

L. Onural, M. F. Erden, and H. M. Ozaktas, “Extensions to common Laplace and Fourier transforms,” IEEE Signal Process. Lett. 4, 310–312 (1997).

[CrossRef]

F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Process. Mag. 9, 21–67 (1992).

[CrossRef]

H. M. Ozaktas, O. Arıkan, M. A. Kutay, and G. Bozdağı, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008).

[CrossRef]

L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).

[CrossRef]

B. Simon, “Resonances and complex scaling: A rigorous overview,” Int. J. Quantum Chem. 14, 529–542 (1978).

[CrossRef]

J. N. Bardsley, “Complex scaling: An introduction,” Int. J. Quantum Chem. 14, 343–352 (1978).

[CrossRef]

A. Torre, “Linear and radial canonical transforms of fractional order,” J. Comput. Appl. Math. 153, 477–486 (2003).

[CrossRef]

K. B. Wolf, “On self-reciprocal functions under a class of integral transforms,” J. Math. Phys. 18, 1046–1051 (1977).

[CrossRef]

M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representations,” J. Math. Phys. 12, 1772–1780 (1971).

[CrossRef]

K. B. Wolf, “Canonical transformations I. Complex linear transforms,” J. Math. Phys. 15, 1295–1301 (1974).

[CrossRef]

K. B. Wolf, “Canonical transformations II. Complex radial transforms,” J. Math. Phys. 15, 2102–2111 (1974).

[CrossRef]

U. Sümbül and H. M. Ozaktas, “Fractional free space, fractional lenses, and fractional imaging systems,” J. Opt. Soc. Am. A 20, 2033–2040 (2003).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917–927 (2005).

[CrossRef]

B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937 (2005).

[CrossRef]

H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).

[CrossRef]

J. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23, 2494–2500 (2006).

[CrossRef]

M. J. Bastiaans and T. Alieva, “Classification of lossless first-order optical systems and the linear canonical transformation,” J. Opt. Soc. Am. A 24, 1053–1062 (2007).

[CrossRef]

J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform,” J. Opt. Soc. Am. A 24, 3135–3139 (2007).

[CrossRef]

T. Alieva and M. J. Bastiaans, “Properties of the canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007).

[CrossRef]

D. Dragoman, “Classical versus complex fractional Fourier transformation,” J. Opt. Soc. Am. A 26, 274–277 (2009).

[CrossRef]

S. Baskal and Y. S. Kim, “ABCD matrices as similarity transformations of Wigner matrices and periodic systems in optics,” J. Opt. Soc. Am. A 26, 2049–2054 (2009).

[CrossRef]

J. Healy and J. T. Sheridan, “Fast linear canonical transforms,” J. Opt. Soc. Am. A 27, 21–30 (2010).

[CrossRef]

H. Fan, L. Hu, and J. Wang, “Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics,” J. Opt. Soc. Am. A 25, 974–978 (2008).

[CrossRef]

A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288–1302 (2010).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A Opt. 12, 743–751 (1995).

[CrossRef]

C. Jung and H. Kruger, “Representation of quantum mechanical wavefunctions by complex valued extensions of classical canonical transformation generators,” J. Phys. A 15, 3509–3523 (1982).

[CrossRef]

S. Abe and J. T. Sheridan, “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach,” J. Phys. A 27, 4179–4187 (1994).

[CrossRef]

M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).

[CrossRef]

C. Wang and B. Lü, “Implementation of complex-order Fourier transforms in complex ABCD optical systems,” Opt. Commun. 203, 61–66 (2002).

[CrossRef]

L. M. Bernardo, “Talbot self-imaging in fractional Fourier planes of real and complex orders,” Opt. Commun. 140, 195–198 (1997).

[CrossRef]

H. M. Ozaktas and M. F. Erden, “Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems,” Opt. Commun. 143, 75–86 (1997).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Opt. Eng. (Bellingham) 35, 732–740 (1996).

[CrossRef]

C.-C. Shih, “Optical interpretation of a complex-order Fourier transform,” Opt. Lett. 20, 1178–1180 (1995).

[CrossRef]
[PubMed]

J. J. Healy and J. T. Sheridan, “Cases where the linear canonical transform of a signal has compact support or is band-limited,” Opt. Lett. 33, 228–230 (2008).

[CrossRef]
[PubMed]

J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform,” Opt. Lett. 33, 2599–2601 (2008).

[CrossRef]
[PubMed]

J. Healy and J. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms,” Opt. Lett. 35, 947–949 (2010).

[CrossRef]
[PubMed]

S. Abe and J. T. Sheridan, “Optical operations on wavefunctions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994).

[CrossRef]
[PubMed]

H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006).

[CrossRef]
[PubMed]

M. J. Bastiaans and T. Alieva, “Synthesis of an arbitrary ABCD system with fixed lens positions,” Opt. Lett. 31, 2414–2416 (2006).

[CrossRef]
[PubMed]

S. Baskal and Y. S. Kim, “Lens optics as an optical computer for group contractions,” Phys. Rev. E 67, 056601 (2003).

[CrossRef]

E. Georgieva and Y. S. Kim, “Slide-rule-like property of Wigner’s little groups and cyclic S matrices for multilayer optics,” Phys. Rev. E 68, 026606 (2003).

[CrossRef]

A. A. Malyutin, “Complex-order fractional Fourier transforms in optical schemes with Gaussian apertures,” Quantum Electron. 34, 960–964 (2004).

[CrossRef]

M. Moshinsky, “Canonical transformations and quantum mechanics,” SIAM J. Appl. Math. 25, 193–212 (1973).

[CrossRef]

J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648 (2009).

[CrossRef]

L. Cohen, Time-Frequency Analysis (Prentice Hall, 1995).

B. Davies, Integral Transforms and Their Applications (Springer, 1978).

P. Kramer, M. Moshinsky, and T. H. Seligman, Complex Extensions of Canonical Transformations and Quantum Mechanics, Vol. 3 of Group Theory and Its Applications, E.M.Loebl, ed. (Academic, 1975), pp. 249–332.

M. J. Bastiaans, Applications of the Wigner Distribution Function in Optics, The Wigner Distribution: Theory and Applications in Signal Processing (Elsevier, 1997), pp. 375–426.

K. B. Wolf, “Construction and properties of canonical transforms,” in Integral Transforms in Science and Engineering (Plenum, 1979), Chap. 9.

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

A. E. Siegman, Lasers (University Science Books, 1986).