Abstract

Recently, a practical method of speckle reduction in laser rear projection displays that uses an optical system with a small moving diffuser has attracted much attention. In this paper, a model of the speckle generation and reduction mechanism in the system is presented. We investigated the speckle, focusing on the physical aspects of its generation, rather than treating it statistically. We found that the granularity of the speckle patterns generated by the small diffuser corresponded to the size of the coherent regions on the projection screen. This determined the efficiency of the speckle reduction when the small diffuser was rotated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
    [CrossRef]
  2. B. Oliver, “Sparkling spots and random diffraction,” Proc. IEEE 51, 220–221 (1963).
    [CrossRef]
  3. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [CrossRef]
  4. J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2007).
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [CrossRef]
  6. P. S. Considine, “Effect of coherence on imaging,” J. Opt. Soc. Am. 56, 1001–1009 (1966).
    [CrossRef]
  7. J. Upatnieks, “Improvement of two-dimensional image quality in coherent optical systems,” Appl. Opt. 6, 1905–1910 (1967).
    [CrossRef] [PubMed]
  8. C. E. Thomas, “Coherent optical noise suppression,” Appl. Opt. 7, 517–522 (1968).
    [CrossRef] [PubMed]
  9. E. N. Leith and J. Upatnieks, “Imagery with pseudo-randomly diffused coherent illumination,” Appl. Opt. 7, 2085–2089 (1968).
    [CrossRef] [PubMed]
  10. M. J. Bowman, “Two new methods of improving optical image quality,” Appl. Opt. 7, 2280–2284 (1968).
    [CrossRef] [PubMed]
  11. H. J. Gerritsen, W. J. Hannan, E. G. Ramberg, “Elimination of speckle noise hologram with redundancy,” Appl. Opt. 7, 2301–2311 (1968).
    [CrossRef] [PubMed]
  12. D. H. Close, “High resolution portable holocamera,” Appl. Opt. 11, 376–383 (1972).
    [CrossRef] [PubMed]
  13. R. F. Lighten, “Speckle reduction by simulation of partially coherent object illumination in holography,” Appl. Opt. 12, 255–265 (1973).
    [CrossRef]
  14. R. Pawluczyk, “Holographic microinterferometer with noise suppression,” Appl. Opt. 28, 3871–3881 (1989).
    [CrossRef] [PubMed]
  15. S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61, 847–851 (1971).
    [CrossRef]
  16. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290–1294 (1976).
    [CrossRef]
  17. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998).
    [CrossRef]
  18. A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
    [CrossRef]
  19. V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48, 80–90 (2009).
    [CrossRef]
  20. K. Kasazumi, Y. Kitaoka, and K. M. A. K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43, 5904–5906 (2004).
    [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley, 2000).

2009 (2)

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48, 80–90 (2009).
[CrossRef]

2008 (1)

A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
[CrossRef]

2004 (1)

K. Kasazumi, Y. Kitaoka, and K. M. A. K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43, 5904–5906 (2004).
[CrossRef]

1998 (1)

1989 (1)

1976 (2)

1973 (1)

1972 (1)

1971 (1)

1968 (4)

1967 (1)

1966 (1)

1964 (1)

1963 (1)

B. Oliver, “Sparkling spots and random diffraction,” Proc. IEEE 51, 220–221 (1963).
[CrossRef]

Adachi, M.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Akita, K.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

An, S.

Andreev, A. L.

A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
[CrossRef]

Andreeva, T. B.

A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
[CrossRef]

Bowman, M. J.

Close, D. H.

Considine, P. S.

Enya, Y.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Gerritsen, H. J.

Goodman, J. W.

Halldórsson, T.

Hannan, W. J.

Ikegami, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Joyeux, D.

Kasazumi, K.

K. Kasazumi, Y. Kitaoka, and K. M. A. K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43, 5904–5906 (2004).
[CrossRef]

Katayama, K.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Kitaoka, Y.

K. Kasazumi, Y. Kitaoka, and K. M. A. K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43, 5904–5906 (2004).
[CrossRef]

Kompanets, I. N.

A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
[CrossRef]

Kyono, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Lapchuk, A.

Leith, E. N.

Lighten, R. F.

Lowenthal, S.

Minchenko, M. V.

A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
[CrossRef]

Nafarrate, A. B.

Nakamura, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Norton, R. E.

Oliver, B.

B. Oliver, “Sparkling spots and random diffraction,” Proc. IEEE 51, 220–221 (1963).
[CrossRef]

Pawluczyk, R.

Pétursson, P. R.

Pozhidaev, E. P.

A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
[CrossRef]

Ramberg, E. G.

Rawson, E. G.

Song, J.

Sumitomo, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Thomas, C. E.

Tokuyama, S.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Tschudi, T.

Ueno, M.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Upatnieks, J.

Wang, L.

Yamamoto, K. M. A. K.

K. Kasazumi, Y. Kitaoka, and K. M. A. K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43, 5904–5906 (2004).
[CrossRef]

Yang, H.

Yeo, I.

Yoshizumi, Y.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

Yun, S.

Yurlov, V.

Appl. Opt. (10)

Appl. Phys. Express (1)

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates,” Appl. Phys. Express 2, 082101 (2009).
[CrossRef]

J. Opt. Soc. Am. (5)

Jpn. J. Appl. Phys. (1)

K. Kasazumi, Y. Kitaoka, and K. M. A. K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys. 43, 5904–5906 (2004).
[CrossRef]

Proc. IEEE (1)

B. Oliver, “Sparkling spots and random diffraction,” Proc. IEEE 51, 220–221 (1963).
[CrossRef]

Quantum Electron. (1)

A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008).
[CrossRef]

Other (2)

J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2007).

J. W. Goodman, Statistical Optics (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) Optical system using the moving diffuser method. (b) Optical system using the small moving diffuser method.

Fig. 2
Fig. 2

Schematic of the speckle generation model. Many bright regions can be seen in the space.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Photo of a speckle pattern observed on the screen. The horizontal dotted line indicates the sampled pixels that made the intensity distribution graph shown in Fig. 5.

Fig. 5
Fig. 5

Intensity distribution of the pixels on the dotted line in Fig. 4.

Fig. 6
Fig. 6

Photos of speckle patterns: (a) the CCD camera focused on the screen, (b) the CCD camera defocused by 500 mm .

Fig. 7
Fig. 7

Photos of speckle patterns on the screen: (a) F-number 11, (b) F-number 4.

Fig. 8
Fig. 8

Experimental setup to directly measure the pattern from the small diffuser. Circles indicate the bright regions of speckle patterns.

Fig. 9
Fig. 9

Patterns from the small diffuser: (a) LED light source, (b) laser light source.

Fig. 10
Fig. 10

Schematic of the speckle generation model.

Fig. 11
Fig. 11

Experimental setup using a sheet with double pinholes. The resultant interference pattern shifts along with the small diffuser.

Fig. 12
Fig. 12

Experimental results for F/8 in (a)–(d) and for F/16 in (e)–(h). (a) Photo of the speckle pattern for F/8 without a mask sheet of double pinholes—the pinholes are indicated with circles as a size reference. (b)–(d) Shifts of the resultant interference caused by the double pinholes as a result of changes in the position relative to the speckle pattern of (a). (e) Photo of a speckle pattern for F/16 without the mask. (f)–(h) Shifts of the resultant interference due to changes in the position relative to (e).

Fig. 13
Fig. 13

Fourier transform of a speckle pattern and definition of the degree of granularity.

Fig. 14
Fig. 14

Schematics of the effect of the first speckle granularity on the averaged CCD interference pattern. (a) Case for a fine first speckle. (b) Case for a coarse first speckle.

Fig. 15
Fig. 15

(a) Relationship between the F-number and the degree of granularity. The horizontal line on the chart indicates the distance of the double pinholes. (b)–(d) The averaged interference patterns generated by the double pinholes when the diffuser was rotated.

Fig. 16
Fig. 16

Relationship between the degree of granularity and the speckle contrasts.

Metrics