Abstract

The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  2. F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108, 17290–17294 (2004).
    [CrossRef]
  3. C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
    [PubMed]
  4. N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
    [CrossRef]
  5. Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
    [CrossRef] [PubMed]
  6. L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
    [CrossRef] [PubMed]
  7. F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
    [CrossRef]
  8. L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
    [CrossRef] [PubMed]
  9. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
    [CrossRef] [PubMed]
  10. C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
    [CrossRef]
  11. J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
    [CrossRef]
  12. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
    [CrossRef] [PubMed]
  13. S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
    [CrossRef] [PubMed]
  14. X. Wang and C. S. Ozkan, “Multisegment nanowire sensors for the detection of DNA molecules,” Nano Lett. 8, 398–404 (2008).
    [CrossRef] [PubMed]
  15. L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005).
    [CrossRef] [PubMed]
  16. www.cst.com.
  17. W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
    [CrossRef]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 2005).
  19. Y. Hao and C. J. Railton, “Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes,” IEEE Trans. Microwave Theory Tech. 46, 82–88 (1998).
    [CrossRef]
  20. N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
    [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  22. A. Sutradhar, G. H. Paulino, and L. J. Gray, Symmetric Galerkin Boundary Element Method (Springer-Verlag, 2008).
  23. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef] [PubMed]
  24. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  25. A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
    [CrossRef]
  26. Z. L. Wang, Nanowires and Nanobelts: Metal and Semiconductor Nanowires (Birkhaeuser, 2005).
  27. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  28. A. V. Zayats, “Electromagnetic field enhancement in the context of apertureless near field microscopy,” Opt. Commun. 161, 156–162 (1999).
    [CrossRef]
  29. X. Cui, W. Zhang, B. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, “Tuning the resonance frequency of Ag-coated dielectric tips,” Opt. Express 15, 8309–8316 (2007).
    [CrossRef] [PubMed]
  30. A. Downes, D. Salter, and A. Elfick, “Simulations of atomic resolution tip-enhanced optical microscopy,” Opt. Express 14, 11324–11329 (2006).
    [CrossRef] [PubMed]
  31. X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
    [CrossRef]

2010 (1)

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

2009 (1)

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

2008 (2)

S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
[CrossRef] [PubMed]

X. Wang and C. S. Ozkan, “Multisegment nanowire sensors for the detection of DNA molecules,” Nano Lett. 8, 398–404 (2008).
[CrossRef] [PubMed]

2007 (4)

W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
[CrossRef] [PubMed]

X. Cui, W. Zhang, B. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, “Tuning the resonance frequency of Ag-coated dielectric tips,” Opt. Express 15, 8309–8316 (2007).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

2006 (4)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

A. Downes, D. Salter, and A. Elfick, “Simulations of atomic resolution tip-enhanced optical microscopy,” Opt. Express 14, 11324–11329 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef] [PubMed]

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

2005 (3)

L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
[CrossRef]

2004 (3)

Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
[CrossRef] [PubMed]

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108, 17290–17294 (2004).
[CrossRef]

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

2003 (2)

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

2002 (1)

L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

2000 (1)

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
[CrossRef]

1999 (1)

A. V. Zayats, “Electromagnetic field enhancement in the context of apertureless near field microscopy,” Opt. Commun. 161, 156–162 (1999).
[CrossRef]

1998 (1)

Y. Hao and C. J. Railton, “Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes,” IEEE Trans. Microwave Theory Tech. 46, 82–88 (1998).
[CrossRef]

1997 (1)

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Ajayan, P. M.

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Barton, J.

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Benicewicz, D.

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Bok, H. M.

S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
[CrossRef] [PubMed]

Borghs, G.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

Bradley, R. K.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef] [PubMed]

Charnay, C.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Ci, L. J.

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

Cui, X.

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

X. Cui, W. Zhang, B. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, “Tuning the resonance frequency of Ag-coated dielectric tips,” Opt. Express 15, 8309–8316 (2007).
[CrossRef] [PubMed]

Dereux, A.

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
[CrossRef]

Devaux, E.

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
[CrossRef]

Dong, L. X.

L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
[CrossRef] [PubMed]

Dorpe, P. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

Downes, A.

Dreyek, R.

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Elfick, A.

Erni, D.

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

X. Cui, W. Zhang, B. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, “Tuning the resonance frequency of Ag-coated dielectric tips,” Opt. Express 15, 8309–8316 (2007).
[CrossRef] [PubMed]

Girard, C.

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
[CrossRef]

Goudonnet, J. P.

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
[CrossRef]

Gray, L. J.

A. Sutradhar, G. H. Paulino, and L. J. Gray, Symmetric Galerkin Boundary Element Method (Springer-Verlag, 2008).

Gudiksen, M. S.

L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Hafner, Ch.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 2005).

Halas, N.

N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
[CrossRef]

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108, 17290–17294 (2004).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef] [PubMed]

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Hao, Y.

Y. Hao and C. J. Railton, “Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes,” IEEE Trans. Microwave Theory Tech. 46, 82–88 (1998).
[CrossRef]

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Houshmand, B.

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[CrossRef]

Huang, L.

L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005).
[CrossRef] [PubMed]

Itoh, T.

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kaneda, N.

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[CrossRef]

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Kim, S.

S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
[CrossRef] [PubMed]

Kim, S. K.

S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Lauhon, L. J.

L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef] [PubMed]

Lee, A.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Lee, M.

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Lieber, C. M.

Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
[CrossRef] [PubMed]

L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Lodewijks, K.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

Loo, C.

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Lu, W.

Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Maes, G.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

Man, S.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Mirkin, C. A.

L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005).
[CrossRef] [PubMed]

Moran, C.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108, 17290–17294 (2004).
[CrossRef]

Moran, C. E.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

Nelson, B. J.

L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
[CrossRef] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Ou, F. S.

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

Ozkan, C. S.

X. Wang and C. S. Ozkan, “Multisegment nanowire sensors for the detection of DNA molecules,” Nano Lett. 8, 398–404 (2008).
[CrossRef] [PubMed]

Park, S.

L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005).
[CrossRef] [PubMed]

Park, S. H.

S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
[CrossRef] [PubMed]

Paulino, G. H.

A. Sutradhar, G. H. Paulino, and L. J. Gray, Symmetric Galerkin Boundary Element Method (Springer-Verlag, 2008).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Qin, L.

L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005).
[CrossRef] [PubMed]

Radloff, C.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Railton, C. J.

Y. Hao and C. J. Railton, “Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes,” IEEE Trans. Microwave Theory Tech. 46, 82–88 (1998).
[CrossRef]

Roy, W. V.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

Salter, D.

Schmid, T.

W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

Shaijumon, M. M.

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

Shuford, K. L.

S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
[CrossRef] [PubMed]

Sutradhar, A.

A. Sutradhar, G. H. Paulino, and L. J. Gray, Symmetric Galerkin Boundary Element Method (Springer-Verlag, 2008).

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 2005).

Tam, F.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108, 17290–17294 (2004).
[CrossRef]

Tao, X. Y.

L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
[CrossRef] [PubMed]

Vajtai, R.

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

Vlaminck, I. D.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Wang, C. L.

L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef] [PubMed]

Wang, X.

X. Wang and C. S. Ozkan, “Multisegment nanowire sensors for the detection of DNA molecules,” Nano Lett. 8, 398–404 (2008).
[CrossRef] [PubMed]

Wang, Z. L.

Z. L. Wang, Nanowires and Nanobelts: Metal and Semiconductor Nanowires (Birkhaeuser, 2005).

Weeber, J. C.

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
[CrossRef]

West, J.

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Wu, Z.

Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
[CrossRef] [PubMed]

Xiang, J.

Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
[CrossRef] [PubMed]

Yang, C.

Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
[CrossRef] [PubMed]

Ye, J.

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

Yeo, B.

Yeo, B. S.

W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

Zayats, A. V.

A. V. Zayats, “Electromagnetic field enhancement in the context of apertureless near field microscopy,” Opt. Commun. 161, 156–162 (1999).
[CrossRef]

Zenobi, R.

X. Cui, W. Zhang, B. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, “Tuning the resonance frequency of Ag-coated dielectric tips,” Opt. Express 15, 8309–8316 (2007).
[CrossRef] [PubMed]

W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

Zhang, L.

L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
[CrossRef] [PubMed]

Zhang, W.

Zhang, W. H.

W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

Zhang, X. B.

L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

F. S. Ou, M. M. Shaijumon, L. J. Ci, D. Benicewicz, R. Vajtai, and P. M. Ajayan, “Multisegmented one dimensional hybrid structures of carbon nanotubes and metal nanowires,” Appl. Phys. Lett. 89, 243122 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

Y. Hao and C. J. Railton, “Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes,” IEEE Trans. Microwave Theory Tech. 46, 82–88 (1998).
[CrossRef]

N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci. 7, 1610–1615 (2010).
[CrossRef]

J. Microsc. (1)

A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2000).
[CrossRef]

J. Phys. Chem. B (2)

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108, 17290–17294 (2004).
[CrossRef]

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. J. Halas, “Reduced symmetry metallodielectric nanoparticles: Synthesis and plasmonic properties,” J. Phys. Chem. B 107, 7327–7333 (2003).
[CrossRef]

J. Phys. Chem. C (2)

J. Ye, P. V. Dorpe, W. V. Roy, K. Lodewijks, I. D. Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113, 3110–3115 (2009).
[CrossRef]

W. H. Zhang, T. Schmid, B. S. Yeo, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

MRS Bull. (1)

N. Halas, “Playing with plasmons: Tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
[CrossRef]

Nano Lett. (5)

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

S. Kim, K. L. Shuford, H. M. Bok, S. K. Kim, and S. H. Park, “Intraparticle surface plasmon coupling in quasi one dimensional nanostructures,” Nano Lett. 8, 800–804 (2008).
[CrossRef] [PubMed]

X. Wang and C. S. Ozkan, “Multisegment nanowire sensors for the detection of DNA molecules,” Nano Lett. 8, 398–404 (2008).
[CrossRef] [PubMed]

L. X. Dong, X. Y. Tao, L. Zhang, B. J. Nelson, and X. B. Zhang, “Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes,” Nano Lett. 7, 58–63 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef] [PubMed]

Nature (2)

Z. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61–65 (2004).
[CrossRef] [PubMed]

L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature 420, 57–61 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. V. Zayats, “Electromagnetic field enhancement in the context of apertureless near field microscopy,” Opt. Commun. 161, 156–162 (1999).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

L. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309, 113–115 (2005).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (1)

C. Loo, A. Lin, L. Hirsch, M. Lee, J. Barton, N. Halas, J. West, and R. Dreyek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Other (5)

www.cst.com.

A. Sutradhar, G. H. Paulino, and L. J. Gray, Symmetric Galerkin Boundary Element Method (Springer-Verlag, 2008).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 2005).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Z. L. Wang, Nanowires and Nanobelts: Metal and Semiconductor Nanowires (Birkhaeuser, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

TEM image of the fabricated nanomatch structure. The dark part corresponds to the metallic end of the match that is spliced to the matchstick made of dielectric material. The diameter of match end is about 60 nm with a cut depth of h = 10   nm ; the diameter of the matchstick is about 46 nm.

Fig. 2
Fig. 2

Spectral response of the permittivity of gold used in our calculations showing both the measured data and the fitted model data for comparison.

Fig. 3
Fig. 3

Schematic drawing of the nanomatch end. The non-spherical match end is displayed on the left where the cut part is later joined to the matchstick. The right picture shows a metallic sphere for comparison. The radius of the metallic sphere is R = 10   nm , whereas the cut depth is termed h as indicated in the figure.

Fig. 4
Fig. 4

The spectral response of the SCS for different match ends as a function of cut depth h. The resonances are identified by bold dashes and accordingly labeled with the corresponding wavelengths. The SCSs are displayed (a) for a y-polarized plane wave excitation and (b) for a z-polarized plane wave excitation (cf. Fig. 3).

Fig. 5
Fig. 5

Electric field strength at the resonances corresponding to the indicated cut depth h of the match end for (a) y-polarization and (b) z-polarization.

Fig. 6
Fig. 6

(a) The spectral response of the electric field strength as a function of the silica matchstick’s lengths l = 20 , 50, 100 nm for a wavelength range between 400 and 800 nm. Inset shows the calculated structure; the metallic match end has a cut depth of h = 10   nm ( R = 10   nm , r = 10   nm ). (b) Distribution of the electric field strength at the corresponding resonance of the resulting nanomatch under y-polarization.

Fig. 7
Fig. 7

The spectral response of the electric field strength at the apex of the match end as a function of the metallic matchstick’s lengths l = 20 , 50, 80, 100 nm. Both the metallic match end and the matchstick consist of gold, where the latter has cut depths of (a) h = 2   nm ( R = 10   nm , r = 6   nm ) and (b) h = 10   nm ( R = 10   nm , r = 10   nm ). The illumination is with y-polarization.

Fig. 8
Fig. 8

Distribution of the electric field strength for the resonant metallic nanomatches with different matchstick lengths (a) l = 80   nm and (b) l = 100   nm . The match end has a cut depth of h = 2   nm and the overall nanomatch consists of gold. The illumination is with y-polarization.

Fig. 9
Fig. 9

The spectral response of the electric field strength at the apex of the match end as a function of the metallic matchstick’s lengths l = 20 , 50, 80, 100 nm. Both the metallic match end and the conical matchstick (full-angle 12°) consist of gold, where the latter has cut depths of (a) h = 10   nm ( R = 10   nm , r = 10   nm ) and (b) h = 16   nm ( R = 10   nm , r = 8   nm ). The truncated cone in (b) yields a smaller facet at the proper joint with a lateral extent of 16 nm instead of 20 nm as in (a). The illumination is with y-polarization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = R 2 ( R h ) 2 = 2 R h h 2 .

Metrics