Abstract

A fiber optic temperature sensor based on localized surface plasmon resonance of spherical gold nanoparticles embedded in a dielectric layer around the unclad core of a small portion of the fiber has been analyzed. Simulations have been carried out for a number of dielectric materials that show considerable changes in their refractive indices due to a change in the temperature in addition to having refractive indices higher than that of the fiber core. The analysis is based on the spectral interrogation method. The surface plasmons in metal nanoparticles have been excited by the light refracted through the core and the dielectric interface. The sensitivity of the sensor has been determined for each dielectric material used, and it is found to be the maximum for CdGeP2 as a sensing medium. The temperature sensing range of the present sensor is also wide because the melting points of the metal and the fiber core, as well as the sensing medium, are large. The proposed fiber optic temperature sensor is compact, light weight, and highly sensitive with a wide temperature sensing range.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920–930 (2004).
    [CrossRef]
  2. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
    [CrossRef]
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Nanoparticles (Wiley-VCH, 1998).
  4. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
    [CrossRef]
  5. L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100–105 (2006).
    [CrossRef]
  6. S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48, 3796–3802 (2009).
    [CrossRef]
  7. T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213–1218 (2009).
    [CrossRef]
  8. V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
    [CrossRef]
  9. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).
  10. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
    [CrossRef]
  11. A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
    [CrossRef]
  12. L. Gao and Z.-Y. Li, “Temperature dependence of nonlinear optical properties in metal/dielectric composites,” Phys. Status Solidi B 218, 571–582 (2000).
    [CrossRef]
  13. A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
    [CrossRef]
  14. A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
    [CrossRef]
  15. D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
    [CrossRef]
  16. S. Okuda and F. Tang, “Thermal stability of nanocrystalline gold prepared by gas deposition method,” Nanostruct. Mater. 6, 585–588 (1995).
    [CrossRef]
  17. W. Cai, H. Hofmeister, and T. Rainer, “Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica,” Physica E (Amsterdam) 11, 339–344 (2001).
    [CrossRef]
  18. H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
    [CrossRef]
  19. J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
    [CrossRef]
  20. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
    [CrossRef]
  21. G. Ghosh and M. Endo, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
    [CrossRef]
  22. J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41, 416–419 (1951).
    [CrossRef]
  23. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  24. A. K. Sharma and B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor,” Appl. Opt. 45, 151–161 (2006).
    [CrossRef]
  25. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
    [CrossRef]
  26. Ş. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21, 805–814 (2003).
    [CrossRef]
  27. R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
    [CrossRef]

2009 (3)

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213–1218 (2009).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef]

S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt. 48, 3796–3802 (2009).
[CrossRef]

2008 (2)

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

2006 (4)

J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor,” Appl. Opt. 45, 151–161 (2006).
[CrossRef]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100–105 (2006).
[CrossRef]

2004 (2)

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920–930 (2004).
[CrossRef]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

2003 (2)

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Ş. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21, 805–814 (2003).
[CrossRef]

2001 (2)

A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
[CrossRef]

W. Cai, H. Hofmeister, and T. Rainer, “Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica,” Physica E (Amsterdam) 11, 339–344 (2001).
[CrossRef]

2000 (1)

L. Gao and Z.-Y. Li, “Temperature dependence of nonlinear optical properties in metal/dielectric composites,” Phys. Status Solidi B 218, 571–582 (2000).
[CrossRef]

1999 (2)

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

1998 (3)

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Nanoparticles (Wiley-VCH, 1998).

1996 (2)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
[CrossRef]

1995 (1)

S. Okuda and F. Tang, “Thermal stability of nanocrystalline gold prepared by gas deposition method,” Nanostruct. Mater. 6, 585–588 (1995).
[CrossRef]

1994 (1)

G. Ghosh and M. Endo, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

1985 (1)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

1951 (1)

Abadias, G.

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

Babonneau, D.

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Nanoparticles (Wiley-VCH, 1998).

Cai, W.

J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
[CrossRef]

W. Cai, H. Hofmeister, and T. Rainer, “Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica,” Physica E (Amsterdam) 11, 339–344 (2001).
[CrossRef]

Chakravadhanula, V. S. K.

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Chau, L. -K.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100–105 (2006).
[CrossRef]

Cheng, S. -F.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100–105 (2006).
[CrossRef]

Chung, M. -F.

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213–1218 (2009).
[CrossRef]

Ciddor, P. E.

DeVore, J. R.

Ding, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Duyne, R. P. V.

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920–930 (2004).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Endo, M.

G. Ghosh and M. Endo, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Faupel, F.

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

Fonda, E.

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

Gao, L.

L. Gao and Z.-Y. Li, “Temperature dependence of nonlinear optical properties in metal/dielectric composites,” Phys. Status Solidi B 218, 571–582 (2000).
[CrossRef]

Genzel, L.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Ghosh, G.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

G. Ghosh and M. Endo, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Girardeau, T.

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

Gupta, B. D.

Haes, A. J.

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920–930 (2004).
[CrossRef]

Hanisch, T. S. C.

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Hensley, D. K.

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

Hofmeister, H.

W. Cai, H. Hofmeister, and T. Rainer, “Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica,” Physica E (Amsterdam) 11, 339–344 (2001).
[CrossRef]

Hu, J.

J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Nanoparticles (Wiley-VCH, 1998).

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

Ila, D.

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

Jebril, S.

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Kreibig, U.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

Kulkarni, A.

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Kundu, T.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef]

Li, C.

J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
[CrossRef]

Li, Z. -Y.

L. Gao and Z.-Y. Li, “Temperature dependence of nonlinear optical properties in metal/dielectric composites,” Phys. Status Solidi B 218, 571–582 (2000).
[CrossRef]

Lin, T. -J.

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213–1218 (2009).
[CrossRef]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100–105 (2006).
[CrossRef]

Lin, Y. -F.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100–105 (2006).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Liu, F.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Marchi, G. D.

A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
[CrossRef]

Mattei, G.

A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
[CrossRef]

Mazzoldi, P.

A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
[CrossRef]

Micha, J. S.

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

Miotello, A.

A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
[CrossRef]

Mukherji, S.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef]

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Okuda, S.

S. Okuda and F. Tang, “Thermal stability of nanocrystalline gold prepared by gas deposition method,” Nanostruct. Mater. 6, 585–588 (1995).
[CrossRef]

Özdemir, S. K.

Pan, A.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Petroff, F.

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

Poker, D. B.

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

Rainer, T.

W. Cai, H. Hofmeister, and T. Rainer, “Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica,” Physica E (Amsterdam) 11, 339–344 (2001).
[CrossRef]

Sada, C.

A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
[CrossRef]

Sai, V. V. R.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef]

Sarkisov, S.

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

Sharma, A. K.

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor,” Appl. Opt. 45, 151–161 (2006).
[CrossRef]

Srivastava, S. K.

Su, X.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Sun, F.

J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
[CrossRef]

Takele, H.

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Tang, F.

S. Okuda and F. Tang, “Thermal stability of nanocrystalline gold prepared by gas deposition method,” Nanostruct. Mater. 6, 585–588 (1995).
[CrossRef]

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Toudert, J.

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

Turhan-Sayan, G.

Verma, R. K.

Williams, E. K.

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

Yang, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zaporojtchenko, V.

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Zeng, H.

J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
[CrossRef]

Zheng, H.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zhu, Y.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Zimmerman, R. L.

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

Anal. Bioanal. Chem. (1)

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920–930 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Surf. Sci. (1)

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci. 205, 323–328 (2003).
[CrossRef]

Biosens. Bioelectron. (2)

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213–1218 (2009).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804–2809 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Ş. K. Özdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21, 805–814 (2003).
[CrossRef]

G. Ghosh and M. Endo, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

J. Phys. Condens. Matter (2)

D. Babonneau, G. Abadias, J. Toudert, T. Girardeau, E. Fonda, J. S. Micha, and F. Petroff, “Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies,” J. Phys. Condens. Matter 20, 035218 (2008).
[CrossRef]

J. Hu, W. Cai, H. Zeng, C. Li, and F. Sun, “Substrate dependent surface plasmon resonance evolution of Ag nanoparticles treated in atmospheres,” J. Phys. Condens. Matter 18, 5415–5423 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. Takele, A. Kulkarni, S. Jebril, V. S. K. Chakravadhanula, T. S. C. Hanisch, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of vapour-deposited polymer composites containing Ag nanoparticles and their changes upon annealing,” J. Phys. D: Appl. Phys. 41, 125409 (2008).
[CrossRef]

Langmuir (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Nanostruct. Mater. (1)

S. Okuda and F. Tang, “Thermal stability of nanocrystalline gold prepared by gas deposition method,” Nanostruct. Mater. 6, 585–588 (1995).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

R. L. Zimmerman, D. Ila, E. K. Williams, S. Sarkisov, D. B. Poker, and D. K. Hensley, “Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation,” Nucl. Instrum. Methods Phys. Res. B 141, 308–311 (1998).
[CrossRef]

Opt. Fiber Technol. (1)

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12, 87–100 (2006).
[CrossRef]

Phys. Rev. B (1)

A. Miotello, G. D. Marchi, G. Mattei, P. Mazzoldi, and C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Phys. Rev. B 63, 075409 (2001).
[CrossRef]

Phys. Status Solidi B (1)

L. Gao and Z.-Y. Li, “Temperature dependence of nonlinear optical properties in metal/dielectric composites,” Phys. Status Solidi B 218, 571–582 (2000).
[CrossRef]

Physica E (Amsterdam) (1)

W. Cai, H. Hofmeister, and T. Rainer, “Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica,” Physica E (Amsterdam) 11, 339–344 (2001).
[CrossRef]

Sens. Actuators B (1)

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100–105 (2006).
[CrossRef]

Surf. Sci. (1)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

Other (3)

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Nanoparticles (Wiley-VCH, 1998).

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics