Abstract

By designing and fabricating appropriate structures, guided-mode resonant gratings can be used as optical filters to attain extremely narrow bandwidths. This high performance makes it difficult to couple light into a waveguide via the grating, which demands extremely high mechanical accuracy to adjust the incident conditions. This paper shows both numerically and experimentally that the incident angle tolerance is significantly wider when the incident light is coupled into the waveguide through an end face rather than via the grating.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
    [CrossRef]
  2. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
  3. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17, 1221–1230 (2000).
    [CrossRef]
  4. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135–1137 (2004).
    [CrossRef]
  5. M.-L. Wu, C.-L. Hsu, H.-C. Lan, H.-I. Huang, Y.-C. Liu, Z.-R. Tu, C.-C. Lee, J.-S. Lin, C.-C. Su, and J.-Y. Chang, “Authentication labels based on guided-mode resonant filters,” Opt. Lett. 32, 1614–1616 (2007).
    [CrossRef]
  6. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
    [CrossRef]
  7. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999).
    [CrossRef]
  8. A. Sentenac and A.-L. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005).
    [CrossRef]
  9. A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
    [CrossRef]
  10. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A 18, 2109–2120 (2001).
    [CrossRef]
  11. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41, 1241–1245 (2002).
    [CrossRef]
  12. S. Boonruang, A. Greenwell, and M. G. Moharam, “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence,” Appl. Opt. 46, 7982–7992 (2007).
    [CrossRef]
  13. K. Tiefenthaler and W. Lukosz, “Integrated optical switches and gas sensors,” Opt. Lett. 9, 137–139 (1984).
    [CrossRef]
  14. P. M. Nellen, K. Tiefenthaler, and W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
    [CrossRef]
  15. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]
  16. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
    [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  18. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348 (1987).
    [CrossRef]
  19. V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990).
    [CrossRef]
  20. N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992).
    [CrossRef]
  21. C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a boundary integral-equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).
    [CrossRef]
  22. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. (Cambridge U. Press, 1996).
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  24. J. R. Mautz, N. Morita, and N. Kumagai, Integral Equation Methods for Electromagnetics (Artech House, 1991).
  25. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993).
    [CrossRef]
  26. A. Sato is preparing a paper to be called “Analysis of finite sized guided-mode resonant gratings by using the fast multiple boundary element method.”
  27. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 1988), pp. 298–318.
  28. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

2007 (2)

2005 (3)

A. Sentenac and A.-L. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005).
[CrossRef]

A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

2004 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999).
[CrossRef]

1998 (1)

1996 (1)

P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. (Cambridge U. Press, 1996).

1994 (1)

C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a boundary integral-equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).
[CrossRef]

1993 (1)

1992 (1)

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992).
[CrossRef]

1991 (1)

J. R. Mautz, N. Morita, and N. Kumagai, Integral Equation Methods for Electromagnetics (Artech House, 1991).

1990 (1)

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990).
[CrossRef]

1989 (1)

1988 (2)

P. M. Nellen, K. Tiefenthaler, and W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 1988), pp. 298–318.

1987 (1)

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348 (1987).
[CrossRef]

1986 (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).

1985 (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

1984 (1)

1981 (1)

1970 (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Bendickson, J. M.

Boonruang, S.

Brundrett, D. L.

Cambril, E.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999).
[CrossRef]

Chang, J. -Y.

Chew, W. C.

C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a boundary integral-equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).
[CrossRef]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Ding, Y.

Dunn, S. C.

Engheta, N.

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992).
[CrossRef]

Fehrembach, A. -L.

A. Sentenac and A.-L. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005).
[CrossRef]

A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

Ferrari, R. L.

P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. (Cambridge U. Press, 1996).

Gaylord, T. K.

Giovannini, H.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999).
[CrossRef]

F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
[CrossRef]

Glytsis, E. N.

Greengard, L.

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348 (1987).
[CrossRef]

Greenwell, A.

Haggans, C. W.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Hsu, C. -L.

Huang, H. -I.

Jacob, D. K.

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Kumagai, N.

J. R. Mautz, N. Morita, and N. Kumagai, Integral Equation Methods for Electromagnetics (Artech House, 1991).

Lan, H. -C.

Lee, C. -C.

Lemarchand, F.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999).
[CrossRef]

F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
[CrossRef]

Li, L.

Lin, J. -S.

Liu, Y. -C.

Lu, C. C.

C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a boundary integral-equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).
[CrossRef]

Lukosz, W.

Magnusson, R.

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Mautz, J. R.

J. R. Mautz, N. Morita, and N. Kumagai, Integral Equation Methods for Electromagnetics (Artech House, 1991).

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).

Moharam, M. G.

Morita, N.

J. R. Mautz, N. Morita, and N. Kumagai, Integral Equation Methods for Electromagnetics (Artech House, 1991).

Murphy, W. D.

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992).
[CrossRef]

Nellen, P. M.

P. M. Nellen, K. Tiefenthaler, and W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Rokhlin, V.

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992).
[CrossRef]

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990).
[CrossRef]

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348 (1987).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sato, A.

A. Sato is preparing a paper to be called “Analysis of finite sized guided-mode resonant gratings by using the fast multiple boundary element method.”

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

Sentenac, A.

A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

A. Sentenac and A.-L. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005).
[CrossRef]

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999).
[CrossRef]

F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
[CrossRef]

Silvester, P. P.

P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. (Cambridge U. Press, 1996).

Su, C. -C.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tiefenthaler, K.

Tu, Z. -R.

Vassiliou, M. S.

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992).
[CrossRef]

Wu, M. -L.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 1988), pp. 298–318.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A.-L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16, 523–525 (1970).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 40, 634–641 (1992).
[CrossRef]

J. Comput. Phys. (2)

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348 (1987).
[CrossRef]

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1, 545–551 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a boundary integral-equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).
[CrossRef]

Opt. Acta (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).

Opt. Commun. (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Opt. Lett. (4)

Sens. Actuators (1)

P. M. Nellen, K. Tiefenthaler, and W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (5)

P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. (Cambridge U. Press, 1996).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

J. R. Mautz, N. Morita, and N. Kumagai, Integral Equation Methods for Electromagnetics (Artech House, 1991).

A. Sato is preparing a paper to be called “Analysis of finite sized guided-mode resonant gratings by using the fast multiple boundary element method.”

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 1988), pp. 298–318.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics