Abstract

We propose systematic investigations of the electromagnetic enhancement by a single nano-groove in gold substrate. The impacts of the groove parameters and of the illumination conditions on the enhanced intensity are explored using a fully vectorial numerical method. The obtained data can be well predicted and explained by a simple Fabry–Perot model. By virtue of the semi-analytical model, we identify two main factors that enable giant electric-field enhancement in very narrow grooves: the Fabry–Perot resonance and the large wave impedance of the fundamental mode in the groove.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  2. M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
    [CrossRef] [PubMed]
  3. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
    [CrossRef]
  4. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337 (2009).
    [CrossRef] [PubMed]
  5. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
    [CrossRef] [PubMed]
  6. H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [CrossRef]
  7. P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
    [CrossRef]
  8. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
    [CrossRef] [PubMed]
  9. P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
    [CrossRef]
  10. H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
    [CrossRef]
  11. E. Popov, M. Nevière, J. Wenger, P. F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
    [CrossRef]
  12. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
    [CrossRef] [PubMed]
  13. H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
    [CrossRef]
  14. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
    [CrossRef]
  15. W. Wirgin, “Resonance scattering of electromagnetic waves from a rectangular groove on a metallic mirror,” Opt. Commun. 7, 70–75 (1973).
    [CrossRef]
  16. A. A. Maradudin, A. V. Schegrov, and T. A. Leskova, “Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface,” Opt. Commun. 135, 352–360 (1997).
    [CrossRef]
  17. J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
    [CrossRef]
  18. M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
    [CrossRef]
  19. T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: a three-dimensional numerical study,” Phys. Rev. B 79, 245409 (2009).
    [CrossRef]
  20. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
    [CrossRef]
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).
  23. M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
    [CrossRef]
  24. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
    [CrossRef]
  25. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef] [PubMed]
  26. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  27. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
    [CrossRef]
  28. L. F. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  29. J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

2009

W. Yuan, H. P. Ho, R. K. Y. Lee, and S. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337 (2009).
[CrossRef] [PubMed]

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: a three-dimensional numerical study,” Phys. Rev. B 79, 245409 (2009).
[CrossRef]

2008

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

2007

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

2006

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

E. Popov, M. Nevière, J. Wenger, P. F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

2005

J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

2004

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

2003

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef] [PubMed]

2002

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

2001

2000

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

1997

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

A. A. Maradudin, A. V. Schegrov, and T. A. Leskova, “Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface,” Opt. Commun. 135, 352–360 (1997).
[CrossRef]

1996

L. F. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
[CrossRef]

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef] [PubMed]

1995

1985

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).

1973

W. Wirgin, “Resonance scattering of electromagnetic waves from a rectangular groove on a metallic mirror,” Opt. Commun. 7, 70–75 (1973).
[CrossRef]

Aigouy, L.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Aizpirua, J.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Allain, L. R.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef] [PubMed]

Apell, P.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Baida, F. I.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

Besbes, M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Bienstman, P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Bonod, N.

Borisov, A. G.

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: a three-dimensional numerical study,” Phys. Rev. B 79, 245409 (2009).
[CrossRef]

Brolo, A. G.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Cao, Q.

Chaumet, P.

Culha, M.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef] [PubMed]

Dickmann, K.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Dintinger, J.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Ducourtieux, S.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Ebbesen, T.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Fattal, D.

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

Gadenne, P.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef] [PubMed]

Gaylord, T. K.

Geshev, P. I.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Gordon, R.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Granet, G.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Grann, E. B.

Gresillon, S.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Guizal, B.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Helfert, S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Hietschold, M.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Ho, H. P.

Hugonin, J. P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
[CrossRef]

J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[CrossRef]

Janssen, O. T. A.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Kahl, M.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

Käll, M.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Klein, S.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Kong, S.

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

Lalanne, P.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608–1615 (2006).
[CrossRef]

J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[CrossRef]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Lee, R. K. Y.

Lenne, P. F.

Leskova, T. A.

A. A. Maradudin, A. V. Schegrov, and T. A. Leskova, “Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface,” Opt. Commun. 135, 352–360 (1997).
[CrossRef]

Li, J.

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

Li, L. F.

Li, Z.

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

Maradudin, A. A.

A. A. Maradudin, A. V. Schegrov, and T. A. Leskova, “Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface,” Opt. Commun. 135, 352–360 (1997).
[CrossRef]

Miyano, K.

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

Miyazali, H. T.

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Moharam, M. G.

Moreau, A.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Nevière, M.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Nugrowati, A. M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).

Pendry, J. B.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef] [PubMed]

Perchec, J. Le

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Pereira, S. F.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Pommet, D. A.

Popov, E.

Quelin, X.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

Rigneault, H.

Rivoal, J. C.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Rodier, J. C.

Sarychev, A.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Schegrov, A. V.

A. A. Maradudin, A. V. Schegrov, and T. A. Leskova, “Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface,” Opt. Commun. 135, 352–360 (1997).
[CrossRef]

Seideman, T.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Shalaev, V.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Silberstein, E.

Stokes, D.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef] [PubMed]

Sukharev, M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Tamaru, H.

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

Teperik, T. V.

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: a three-dimensional numerical study,” Phys. Rev. B 79, 245409 (2009).
[CrossRef]

Urbach, H. P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

van de Nes, A. S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

van Haver, S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Van Labeke, D.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Vo-Dinh, T.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef] [PubMed]

Voges, E.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

Wenger, J.

Wirgin, W.

W. Wirgin, “Resonance scattering of electromagnetic waves from a rectangular groove on a metallic mirror,” Opt. Commun. 7, 70–75 (1973).
[CrossRef]

Witting, T.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Xu, H.

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Xu, M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

Yuan, W.

Anal. Chem.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[CrossRef]

Nature

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Opt. Commun.

W. Wirgin, “Resonance scattering of electromagnetic waves from a rectangular groove on a metallic mirror,” Opt. Commun. 7, 70–75 (1973).
[CrossRef]

A. A. Maradudin, A. V. Schegrov, and T. A. Leskova, “Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface,” Opt. Commun. 135, 352–360 (1997).
[CrossRef]

Phys. Rev. B

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000).
[CrossRef]

T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: a three-dimensional numerical study,” Phys. Rev. B 79, 245409 (2009).
[CrossRef]

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75, 035411 (2007).
[CrossRef]

Phys. Rev. E

H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Phys. Rev. Lett.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008).
[CrossRef] [PubMed]

Physica B

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Science

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Other

J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) An air groove cut in gold substrate illuminated by an obliquely incident TM-polarized plane wave. (b)–(d) Definitions of the scattering coefficients t, r a , and r m , respectively.

Fig. 2
Fig. 2

EF under normal illumination as a function of the groove depth h for two groove widths (a) w = 0.01 λ and (b) w = 0.1 λ ; λ = 1 μ m , n m = 0.26 + 6.82 i . The a-FMM data and the predictions of the Fabry–Perot model are shown by the circles and solid curves, respectively. The vertical dashed lines show the resonance depths h res given by Eq. (4) with different m ( m = 0 , 1 , 2 , 3 from left to right in each figure).

Fig. 3
Fig. 3

x - z distribution of normalized field intensities | H y | 2 / | H inc | 2 (left column), | E x | 2 / | E inc | 2 (central column), and | E z | 2 / | E inc | 2 (right column) in the gold groove [ w = 0.01 λ , h = h res ( m = 0 ) = 0.077 λ ] under normal illumination by a plane wave ( λ = 1 μ m ) . Here | E inc | 2 and | H inc | 2 denote the electric- and magnetic-field intensities of the incident plane wave, respectively. The superimposed vertical dashed lines show the groove boundaries. (a) a-FMM data. (b) Model predictions.

Fig. 4
Fig. 4

(a) EF res of the gold groove achieved at h = h res ( m = 0 ) (b) under resonance conditions as a function of the groove width w and for several wavelengths ( λ = 0.7 , 1, 3, 10 μ m , and n m = 0.16 + 3.95 i , 0.26 + 6.82 i , 1.64 + 18.59 i , 12.39 + 55.04 i , respectively). The calculations are performed for normally incident plane waves. The a-FMM data and model predictions are shown by discrete markers and continuous curves, respectively, and different line styles correspond to different wavelengths.

Fig. 5
Fig. 5

(a)–(f) Values of the fundamental quantities | t | (under normal illumination), | r a | , N res , | η | , Re ( n eff ) , and Im ( n eff ) as functions of the groove width w. The data are calculated with fully vectorial a-FMM for different wavelengths λ = 0.7 μ m (dotted curves), 1 μ m (dashed curves), 3 μ m (solid curves), 10 μ m (dashed-dotted curves).

Fig. 6
Fig. 6

(a) Dependence of EF on the incident angle θ of the illuminating plane wave. The a-FMM data and the predictions of the Fabry–Perot model are shown by the discrete markers and continuous curves, respectively. (b) Dependence of | t | on θ calculated with fully vectorial a-FMM. All the results are obtained for w = 0.01 λ and h = h res ( m = 0 ) = 0.077 λ (top curves), or w = 0.1 λ and h = h res ( m = 0 ) = 0.123 λ (bottom curves), and λ = 1 μ m .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , z ) = a ψ 0 ( x ) exp ( i k 0 n eff z ) + b ψ 0 + ( x ) exp [ i k 0 n eff ( h + z ) ] ,
a = t + r a   exp ( i k 0 n eff h ) b ,     b = r m   exp ( i k 0 n eff h ) a ,
EF = | η t 1 r m   exp ( i 2 k 0 n eff h ) 1 r a r m   exp ( i 2 k 0 n eff h ) | 2 ,
2 k 0   Re ( n eff ) h + arg ( r a ) + arg ( r m ) = 2 m π ,
EF res = | η t | 2 | 1 | r m | exp [ 2 k 0   Im ( n eff ) h res ] exp [ i   arg ( r a ) ] | 2 | 1 | r a | | r m | exp [ 2 k 0   Im ( n eff ) h res ] | 2 .

Metrics