Abstract

We report the measurement of a polarization-independent guided-mode resonant filter with a Q factor of 2200 functioning near normal incidence in the near infrared (850nm). Besides this remarkable performance, we provide a detailed optical and structural characterization of the component, which points out the origins of the limitation of the experimental performance. We conclude that the defaults in question can be corrected by improving the lithography process, and we are confident that even greater performance will be obtained in future realizations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
    [CrossRef]
  2. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
    [CrossRef]
  3. A. L. Fehrembach and A. Sentenac, “Study of waveguide gratings eigenmodes for unpolarized filtering applications,” J. Opt. Soc. Am. A 20, 481–488 (2003).
    [CrossRef]
  4. D. Lacour, G. Granet, J. P. Plumey, and A. Mure Ravaud, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A 20, 1546–1552 (2003).
    [CrossRef]
  5. A. L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
    [CrossRef]
  6. A. B. Greenwell, S. Boonruang, and M. G. Moharam, “Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance,” Opt. Express 15, 8626–8638 (2007).
    [CrossRef] [PubMed]
  7. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt. 43, 1683–1694 (2004).
    [CrossRef] [PubMed]
  8. E. Popov and B. Bozhkov, “Corrugated waveguides as resonance optical filters-advantages and limitations,” J. Opt. Soc. Am. A 18, 1758–1764 (2001).
    [CrossRef]
  9. P. Song and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996)
    [CrossRef]
  10. A. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization-independent, doubly periodic resonant grating filter,” Opt. Lett. 32, 2269–2271 (2007).
    [CrossRef] [PubMed]
  11. S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
    [CrossRef]
  12. E. Grinvald, T. Katchalski, S. Soria, S. Levit, and A. A. Friesem, “Role of photonic bandgaps in polarization-independent grating waveguide structures,” J. Opt. Soc. Am. A 25, 1435–1443 (2008).
    [CrossRef]
  13. N. Destouches, J. C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14, 12613–12622 (2006).
    [CrossRef] [PubMed]
  14. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998).
    [CrossRef]
  15. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
    [CrossRef]
  16. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
    [CrossRef]
  17. S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
    [CrossRef]
  18. A. L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19, 1136–1144 (2002).
    [CrossRef]
  19. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  20. A. Talneau, F. Lemarchand, A.-L. Fehrembach, and A. Sentenac, “Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances,” Appl. Opt. 49, 658–662 (2010).
    [CrossRef] [PubMed]
  21. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
    [CrossRef]

2010

2008

E. Grinvald, T. Katchalski, S. Soria, S. Levit, and A. A. Friesem, “Role of photonic bandgaps in polarization-independent grating waveguide structures,” J. Opt. Soc. Am. A 25, 1435–1443 (2008).
[CrossRef]

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

2007

2006

2005

A. L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

2004

2003

2002

2001

1998

1997

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

1996

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

P. Song and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996)
[CrossRef]

Arguel, P.

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Bonnefont, S.

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Boonruang, S.

Bouchard, O.

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Boyko, O.

Bozhkov, B.

Clausnitzer, T.

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Daran, E.

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Destouches, N.

Fehrembach, A.

Fehrembach, A. L.

Fehrembach, A.-L.

A. Talneau, F. Lemarchand, A.-L. Fehrembach, and A. Sentenac, “Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances,” Appl. Opt. 49, 658–662 (2010).
[CrossRef] [PubMed]

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

Friesem, A. A.

E. Grinvald, T. Katchalski, S. Soria, S. Levit, and A. A. Friesem, “Role of photonic bandgaps in polarization-independent grating waveguide structures,” J. Opt. Soc. Am. A 25, 1435–1443 (2008).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Gauthier-Lafaye, O.

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Granet, G.

Greenwell, A. B.

Grinvald, E.

Hernandez, S.

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Herzig, H. P.

Jalabert, L.

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Katchalski, T.

Lacour, D.

Lemarchand, F.

Levit, S.

Li, L.

Liu, Z. S.

Lozes-Dupuy, F.

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Lyndin, N.

Magnusson, R.

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998).
[CrossRef]

Maldonado, T. A.

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

Maystre, D.

Moharam, M. G.

Morris, G. M.

Mure Ravaud, A.

Niederer, G.

Parriaux, O.

Plumey, J. P.

Pommier, J. C.

Popov, E.

Priambodo, P. S.

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

Rosenblatt, D.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Scheid, E.

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Schnieper, M.

Sentenac, A.

Sentenac, and A.

Shamir, J.

Sharon, A.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Shin, D.

Song, P.

Soria, S.

Talneau, A.

Thiele, H.

Tibuleac, S.

Tonchev, S.

Young, P. P.

Zschokke, C.

Appl. Opt.

Appl. Phys. Lett.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

A. L. Fehrembach and A. Sentenac, “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. 86, 121105 (2005).
[CrossRef]

S. Hernandez, O. Gauthier-Lafaye, A.-L. Fehrembach, S. Bonnefont, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “High performance 2D resonant grating filter at 850 nm under high oblique incidence of ∼60°,” Appl. Phys. Lett. 92, 131112 (2008).
[CrossRef]

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

IEEE J. Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

J. Appl. Phys.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Microelectron. Eng.

S. Hernandez, O. Bouchard, E. Scheid, E. Daran, L. Jalabert, P. Arguel, S. Bonnefont, O. Gauthier-Lafaye, and F. Lozes-Dupuy, “850 nm wavelength range nanoscale resonant optical filter fabrication using standard microelectronics techniques,” Microelectron. Eng. 84, 673–677 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic drawing of a fabricated resonant grating filter. (b) Main directions of the hexagonal lattice and corresponding coupling directions at quasi-normal incidence.

Fig. 2
Fig. 2

Comparison of theoretical (right side of the figure) and experimental (left side of the figure) dispersion relations of the hexagonal grating filter. Solid circles are s- polarized resonances. Open circles are p-polarized resonances. Experimentally, the size of each circle is proportional to the resonance intensity at that point. Theoretically, the size of each circle is proportional to the spectral FWHM of the peak. Black (gray) lines correspond to theoretical computation in s (p) polarization.

Fig. 3
Fig. 3

Theoretical reflection (thin lines) and transmission spectra (thick lines) of the designed component illuminated by a Gaussian beam of diameter 600 μ m at waist for p polarization (black lines) and s polarization (gray lines).

Fig. 4
Fig. 4

(a) Normal incidence and (b) near-normal incidence reflection (thin lines) and transmission (thick lines) spectra showing that polarization-independent working conditions can be reached (p polarization spectra, black lines; s polarization spectra, gray lines).

Fig. 5
Fig. 5

Reflection (R) and transmission (T) spectra in s (gray lines) and p (black lines) polarization of the second filter, showing resonance at 850 nm . The dotted line with open circles corresponds to the sum of R and T spectra in p polarization. Note that the horizontal scale is expanded relative to Fig. 3.

Fig. 6
Fig. 6

Composite image of the far field of the transmitted beam. To achieve a high dynamic range, several images with different exposures are superimposed, with the overexposed areas blanked.

Fig. 7
Fig. 7

(a) 2D map of the resonance frequency of the filter measured locally. (b) Comparison of experimental (open circles) and computed (thick dark line) reconstructed spectrum. The gray spectrum is the initial theoretical response of the filter (computed within a Gaussian beam approximation).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ inc + K mn 2 π λ n f ,
R ( λ ) = i exp ( ( d ( i ) ) D ) 2 { A 0 exp ( ( λ λ i ) w 0 ) } ,

Metrics