Abstract

We derive an approach for imaging attenuative sample parameters with a confocal scanning system. The technique employs computational processing to form the estimate in a pixel-by-pixel manner from measurements at the Fourier plane, rather than detecting a focused point at a pinhole. While conventional imaging system analysis and design assumes an independent scatterer at each point in the sample, attenuation must be treated with a tomographic approach. We show that a simple estimator may be derived that requires minimal computation and compare it to the conventional pinhole estimate. The method can potentially be used to image attenuation parameters and occlusion with incoherent detection, as well as refractive index variation with coherent detection, and could potentially allow for video rate imaging due to its computational simplicity. We further consider the application to the problem of an unknown gain or phase value, such as in the measurement of phase with a gradient sensor. And we propose a technique to mitigate the effect by computationally imaging off-focus planes. The principles are demonstrated with numerical simulations in two dimensions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription