Abstract

We consider the application of tomography to the reconstruction of 2-D vector fields. The most convenient sensor configuration in such problems is the regular positioning along the domain boundary. However, the most accurate reconstructions are obtained by sampling uniformly the Radon parameter domain rather than the border of the reconstruction domain. This dictates a prohibitively large number of sensors and impractical sensor positioning. In this paper, we propose uniform placement of the sensors along the boundary of the reconstruction domain and interpolation of the measurements for the positions that correspond to uniform sampling in the Radon domain. We demonstrate that when the cubic spline interpolation method is used, a 60 times reduction in the number of sensors may be achieved with only about 10% increase in the error with which the vector field is estimated. The reconstruction error by using the same sensors and ignoring the necessity of uniform sampling in the Radon domain is in fact higher by about 30%. The effects of noise are also examined.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved 2D vector field estimation using probabilistic weights

Archontis Giannakidis and Maria Petrou
J. Opt. Soc. Am. A 28(8) 1620-1635 (2011)

High resolution image acquisition from magnetic resonance and computed tomography scans using the curvelet fusion algorithm with inverse interpolation techniques

Fatma E. Ali, Ibrahim M. El-Dokany, Abdelfattah A. Saad, Waleed Al-Nuaimy, and Fathi E. Abd El-Samie
Appl. Opt. 49(1) 114-125 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription