Abstract

A high-sensitivity molecular sensor using a hollow-core photonic crystal fiber (HCPCF) based on surface-enhanced Raman scattering (SERS) has been experimentally demonstrated and theoretically analyzed. A factor of 100 in sensitivity enhancement is shown in comparison to direct sampling under the same conditions. With a silver nanoparticle colloid as the SERS substrate and Rhodamine 6G as a test molecule, the lowest detectable concentration is 1010M with a liquid-core photonic crystal fiber (LCPCF) probe, and 108M for direct sampling. The high sensitivity provided by the LCPCF SERS probe is promising for molecular detection in various sensing applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241-250 (1998).
    [CrossRef]
  2. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
    [CrossRef]
  3. A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992).
    [CrossRef]
  4. B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
    [CrossRef] [PubMed]
  5. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107, 3372-3378 (2003).
    [CrossRef]
  6. H. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15, 12230-12239 (2007).
    [CrossRef] [PubMed]
  7. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
    [CrossRef] [PubMed]
  8. Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
    [CrossRef]
  9. C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005).
    [CrossRef]
  10. M. Volkan, D. L. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes,” Appl. Spectrosc. 54, 1842-1848 (2000).
    [CrossRef]
  11. D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28-36 (2000).
    [CrossRef]
  12. D. L. Stokes, Z. H. Chi, and T. Vo-Dinh, “Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis,” Appl. Spectrosc. 58, 292-298 (2004).
    [CrossRef] [PubMed]
  13. R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
    [CrossRef]
  14. E. Polwart, R. L. Keir, C. M. Davidson, W. E. Smith, and D. A. Sadler, “Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles,” Appl. Spectrosc. 54, 522-527 (2000).
    [CrossRef]
  15. Y. Komachi and H. Sato, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
    [CrossRef] [PubMed]
  16. J. Ma and Y. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527-2533 (1996).
    [CrossRef] [PubMed]
  17. A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
    [CrossRef]
  18. H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
    [CrossRef] [PubMed]
  19. M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968-970 (2009).
    [CrossRef] [PubMed]
  20. M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466-468 (2010).
    [CrossRef]
  21. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
    [CrossRef]
  22. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
    [CrossRef]
  23. C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
    [CrossRef]
  24. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15, 13675-13681 (2007).
    [CrossRef] [PubMed]
  25. Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
    [CrossRef]
  26. Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
    [CrossRef]
  27. G. E. Walrafen and J. Stone, “Intensification of spontaneous Raman spectra by use of liquid core optical fibers,” Appl. Spectrosc. 26, 585-589 (1972).
    [CrossRef]
  28. M. J. Pelletier and R. Altkorn, “Efficient elimination of fluorescence background from Raman spectra collected in a liquid core optical fiber,” Appl. Spectrosc. 54, 1837-1841 (2000).
    [CrossRef]
  29. M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73, 1393-1397 (2001).
    [CrossRef] [PubMed]
  30. R. Altkorn, M. D. Malinsky, R. P. V. Duyne, and I. Koev, “Intensity considerations in liquid core optical fiber Raman spectroscopy,” Appl. Spectrosc. 55, 373-381 (2001).
    [CrossRef]
  31. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972-2974 (2006).
    [CrossRef] [PubMed]
  32. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
    [CrossRef]
  33. C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
    [CrossRef]
  34. M. Kerker, O. Siiman, L. A. Bumm, and D. S. Wang, “Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver,” Appl. Opt. 19, 3253-3255 (1980).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (4)

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
[CrossRef] [PubMed]

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

2007 (5)

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

H. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15, 12230-12239 (2007).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15, 13675-13681 (2007).
[CrossRef] [PubMed]

2006 (4)

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972-2974 (2006).
[CrossRef] [PubMed]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

2005 (3)

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005).
[CrossRef]

Y. Komachi and H. Sato, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
[CrossRef] [PubMed]

2004 (2)

D. L. Stokes, Z. H. Chi, and T. Vo-Dinh, “Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis,” Appl. Spectrosc. 58, 292-298 (2004).
[CrossRef] [PubMed]

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107, 3372-3378 (2003).
[CrossRef]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

2001 (2)

M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73, 1393-1397 (2001).
[CrossRef] [PubMed]

R. Altkorn, M. D. Malinsky, R. P. V. Duyne, and I. Koev, “Intensity considerations in liquid core optical fiber Raman spectroscopy,” Appl. Spectrosc. 55, 373-381 (2001).
[CrossRef]

2000 (4)

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241-250 (1998).
[CrossRef]

1996 (1)

1992 (1)

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

1982 (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

1980 (1)

1972 (1)

Altkorn, R.

Amezcua-Correa, A.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Argyros, A.

Baumberg, J. J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Bermel, P.

Bumm, L. A.

Burr, G.

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241-250 (1998).
[CrossRef]

Chen, S.

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Chi, Z. H.

Chu, H.

Cox, F. M.

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Davidson, C. M.

Demohan, M. S.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

Dluhy, R.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Driskell, J.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Du, H.

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466-468 (2010).
[CrossRef]

M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968-970 (2009).
[CrossRef] [PubMed]

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

Duyne, R. P. V.

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107, 3372-3378 (2003).
[CrossRef]

Farjadpour, A.

Feld, Mi. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Finlayson, C. E.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Gessner, R.

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Ghosh, D.

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

Grabhorn, H.

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Gu, C.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
[CrossRef] [PubMed]

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005).
[CrossRef]

Han, Y.

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466-468 (2010).
[CrossRef]

M. K. K. Oo, Y. Han, R. Martini, S. Sukhishvili, and H. Du, “Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles,” Opt. Lett. 34, 968-970 (2009).
[CrossRef] [PubMed]

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

Hayes, J. R.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Hou, L.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
[CrossRef] [PubMed]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Howdle, S. M.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Huang, Y.

Ibanescu, M.

Im, S. H.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Jin, G.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
[CrossRef] [PubMed]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Jin, W.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jones, L.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Kalluri, S.

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241-250 (1998).
[CrossRef]

Kanka, J.

Keir, R. L.

Kerker, M.

Kiefer, W.

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

Koev, I.

Komachi, Y.

Large, M. C. J.

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

Li, Y.

Li, Z.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

Liu, J.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
[CrossRef] [PubMed]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Liu, Y.

Lu, C.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Ma, J.

Malinsky, M. D.

Martini, R.

McLellan, J.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

Mrozek, I.

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Newhouse, R.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107, 3372-3378 (2003).
[CrossRef]

Oo, M. K.

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

Oo, M. K. K.

Otto, A.

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Peacock, A. C.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Pelletier, M. J.

M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73, 1393-1397 (2001).
[CrossRef] [PubMed]

M. J. Pelletier and R. Altkorn, “Efficient elimination of fluorescence background from Raman spectra collected in a liquid core optical fiber,” Appl. Spectrosc. 54, 1837-1841 (2000).
[CrossRef]

Petry, R.

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Polwart, E.

Popp, J.

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Rodriguez, A.

Rosch, P.

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Roundy, D.

Sadler, D. A.

Sato, H.

Sazio, P. J. A.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Schmitt, M.

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Schwartzberg, A. M.

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Seballos, L.

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Shanmukh, S.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Shi, C.

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Siekkinen, A.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

Siiman, O.

Smith, W. E.

Stokes, D. L.

Stone, J.

Strehle, M. A.

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Sukhishvili, S.

Tian, L.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Tripp, R. A.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Vo-Dinh, T.

Volkan, M.

Walrafen, G. E.

Wang, D. S.

Wiley, B. J.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

Xia, Y.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

Xiao, L.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

Yan, H.

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
[CrossRef] [PubMed]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yang, C.

H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express 16, 8300-8305 (2008).
[CrossRef] [PubMed]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Yang, J.

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Yao, Y.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Zhang, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Zhang, J. Z.

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005).
[CrossRef]

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Zhao, Y.

H. Chu, Y. Liu, Y. Huang, and Y. Zhao, “A high sensitive fiber SERS probe based on silver nanorod arrays,” Opt. Express 15, 12230-12239 (2007).
[CrossRef] [PubMed]

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Zhu, Y.

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

Adv. Funct. Mater. (1)

A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, and S. M. Howdle, “Surface-enhanced Raman scattering using microstructured optical fiber substrates,” Adv. Funct. Mater. 17, 2024-2030 (2007).
[CrossRef]

Anal. Chem. (1)

M. J. Pelletier and R. Altkorn, “Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell,” Anal. Chem. 73, 1393-1397 (2001).
[CrossRef] [PubMed]

Analyst (Cambridge, U.K.) (1)

R. Gessner, P. Rosch, R. Petry, M. Schmitt, M. A. Strehle, W. Kiefer, and J. Popp, “The application of a SERS fiber probe for the investigation of sensitive biological samples,” Analyst (Cambridge, U.K.) 129, 1193-1199 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

C. Shi, H. Yan, C. Gu, D. Ghosh, L. Seballos, S. Chen, and J. Z. Zhang, “A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection,” Appl. Phys. Lett. 92, 103107 (2008).
[CrossRef]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504 (2007).
[CrossRef]

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 153101 (2008).
[CrossRef]

Appl. Spectrosc. (6)

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241-250 (1998).
[CrossRef]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
[CrossRef]

J. Phys. Chem. A (1)

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107, 3372-3378 (2003).
[CrossRef]

J. Phys. Chem. B (1)

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110, 15666-15675 (2006).
[CrossRef] [PubMed]

J. Phys.: Condens. Matter (2)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and Mi. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597-R624 (2002).
[CrossRef]

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143-1212 (1992).
[CrossRef]

Nano Lett. (1)

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Opt. Eng. (1)

Y. Han, M. K. K. Oo, Y. Zhu, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering,” Opt. Eng. 47, 040502 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (2)

Y. Han, M. K. Oo, Y. Zhu, S. Sukhishvili, L. Xiao, M. S. Demohan, W. Jin, and H. Du, “Liquid-core photonic crystal fiber platform for Raman scattering measurements of microliter analyte solutions,” Proc. SPIE 6767, 67670G (2007).
[CrossRef]

C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108 (2005).
[CrossRef]

Sens. Actuators B (1)

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28-36 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Cross sectional view of the Air-6-800 photonic crystal fiber (provided by Crystal Fiber A/S). (b) Transmission spectrum of the HCPCF.

Fig. 2
Fig. 2

Comparison of SERS spectra of R6G at the concentration of 10 6 M between direct sampling and using a 2 mm liquid-filled HCPCF.

Fig. 3
Fig. 3

Comparison of the SERS signals at lowest excitation powers between direct sampling and using liquid-filled HCPCF when the concentration of R6G is 10 6 M .

Fig. 4
Fig. 4

SERS signals detected from (a) direct sampling and (b) liquid-filled HCPCF when the concentration of R6G is 10 8 M . While direct sampling can detect R6G signal, liquid-filled HCPCF failed because of an enhanced SNPs background.

Fig. 5
Fig. 5

When the solution of SNPs is diluted by a factor of 10, the SERS signals are detected from (a) direct sampling and (b) liquid-filled HCPCF at the concentration of 10 7 M . The positions of typical R6G peaks are marked by arrows. In this case, liquid-filled HCPCF can detect a lower concentration ( 10 7 M ) than direct sampling.

Fig. 6
Fig. 6

Background comparison between a liquid-filled HCPCF and a LCPCF with only the silver colloid.

Fig. 7
Fig. 7

SERS signal from the detection of 0.1 nM R6G using a LCPCF. Peaks (a) and (c) are from the citrate introduced during the synthesis of SNPs. Peaks (b), (d), (e), (f), (g), (h), (i), (j), (k), and (l) are typical R6G peaks. Specifically, (d) and (e) are split from the 1204 cm 1 peak, while (g) and (h) are split from the 1312 cm 1 peak compared to the high-concentration SERS spectrum.

Fig. 8
Fig. 8

Light propagation when focusing a Gaussian beam at (a) the surface of a bulk liquid medium (water), (b) the entrance of a HCPCF with open air channels, (c) the entrance of a HCPCF with all channels filled with liquid, (d) the entrance of a LCPCF with only the core channels filled with liquid, (e) the entrance of a LCPCF with a 200 μ m air gap between the entrance and the liquid surface In each set of images, the top one corresponds to the field distribution near the entrance of either bulk medium or HCPCF, while the bottom one corresponds to the field distribution after a propagation distance of 400 μ m from the entrance.

Fig. 9
Fig. 9

Light power inside the fiber cross section with respect to the propagation distance in various cases: (a) bulk water; (b) HCPCF with open air channels; (c) water-filled HCPCF; (d) LCPCF with a 200 μ m air gap between the fiber entrance and the surface of water.

Fig. 10
Fig. 10

Plot of intensity distribution with respect to the radial position of (a) liquid-filled HCPCF; (b) LCPCF. Gray regions indicate silica walls in the PCF.

Tables (1)

Tables Icon

Table 1 Using the 1509 cm 1 Peak as an Example, the Intensity of the Conventional Raman Signal and the SERS Signal in Both Direct Sampling and the Liquid-Filled HCPCF

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF = I SERS C SERS I Raman C Raman

Metrics