Abstract

On the principle of phase-shift mask, the metal segment of a sub-wavelength Ag grating on a quartz substrate is used as a phase-shifting layer in this photolithography method. When the radiation modes of the surface plasmon polaritons (SPPs) excited on the Ag surface have optical phase opposite to that of the waves emitting from the slits, destructive interference occurs and the diffraction limit can be broken through. The SPPs excited on the surface between Ag and water can be transformed into propagation modes in the photoresist. Therefore, nanolithography can be achieved in the quasi-far field with this method.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subwavelength photolithography based on surface-plasmon polariton resonance

Xiangang Luo and Teruya Ishihara
Opt. Express 12(14) 3055-3065 (2004)

Plasmonic interference nanolithography with a double-layer planar silver lens structure

Beibei Zeng, Xufeng Yang, Changtao Wang, and Xiangang Luo
Opt. Express 17(19) 16783-16791 (2009)

Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity

Weihao Ge, Chinhua Wang, Yinfei Xue, Bing Cao, Baoshun Zhang, and Ke Xu
Opt. Express 19(7) 6714-6723 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription