Abstract

We investigated influences of optics and surround area on color appearance of defocused, small narrow band photopic lights (1 arc diameter, λmax 510628nm) centered within a black annulus and surrounded by a white field. Participants included seven normal trichromats with L- or M-cone biased ratios. We controlled chromatic aberration with elements of a Powell achromatizing lens and corrected higher-order aberrations with an adaptive optics system. Longitudinal chromatic aberrations, but not monochromatic aberrations, are involved in changing appearance of small lights with defocus. Surround field structure is important because color changes were not observed when lights were presented on a uniform white surround.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
    [CrossRef]
  2. R. W. Burnham, “The dependence of color upon area,” Am. J. Psychol. 64, 521-533 (1951).
    [CrossRef] [PubMed]
  3. H. Hartridge, “Visibility of blue and yellow,” Nature 153, 775-776 (1949).
    [CrossRef]
  4. R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing-distance or field-size,” Nature 161, 484 (1948).
    [CrossRef] [PubMed]
  5. W. E. K. Middleton and M. C. Holmes, “The apparent colors of surfaces of small subtense--a preliminary report,” J. Opt. Soc. Am. 39, 582-591 (1949).
    [CrossRef]
  6. J. Krauskopf, “Color appearance of small stimuli and the spatial distribution of color receptors,” J. Opt. Soc. Am. 54, 1171-1171 (1964).
    [CrossRef]
  7. D. O. Weitzman and J. A. Kinney, “Appearance of color for small, brief, spectral stimuli, in the central fovea,” J. Opt. Soc. Am. 57, 665-670 (1967).
    [CrossRef] [PubMed]
  8. I. Abramov, J. Gordon, and H. Chan, “Color appearance across the retina: effects of a white surround,” J. Opt. Soc. Am. A 9, 195-202 (1992).
    [CrossRef] [PubMed]
  9. H. Uchikawa, K. Uchikawa, and R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881-890 (1989).
    [CrossRef] [PubMed]
  10. V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vision Res. 41, 1007-1021 (2001).
    [CrossRef] [PubMed]
  11. D. H. Marimont and B. A. Wandell, “Matching color images: the effects of axial chromatic aberration,” J. Opt. Soc. Am. A 11, 3113-3122 (1994).
    [CrossRef]
  12. N. P. Cottaris, “Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology,” J. Opt. Soc. Am. A 20, 1694-1713 (2003).
    [CrossRef]
  13. J. M. Wood, D. A. Atchison, and A. Chaparro, “When red lights look yellow,” Invest. Ophthalmol. Visual Sci. 6, 4348-4352 (2005).
    [CrossRef]
  14. W. D. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London, Ser. A 83, 120-127 (1909).
    [CrossRef]
  15. S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984).
    [CrossRef] [PubMed]
  16. W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365-372 (1984).
    [CrossRef] [PubMed]
  17. R. L. Vimal, J. Pokorny, and V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309-1318 (1987).
    [CrossRef] [PubMed]
  18. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564-565 (1957).
    [CrossRef] [PubMed]
  19. P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
    [CrossRef]
  20. G. A. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321-336 (1947).
    [CrossRef] [PubMed]
  21. D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 349-360 (1989).
    [CrossRef] [PubMed]
  22. J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006).
    [CrossRef]
  23. F. J. Rucker and D. Osorio, “The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast,” Vision Res. 48, 1929-1939 (2008).
    [CrossRef] [PubMed]
  24. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002).
    [CrossRef] [PubMed]
  25. V. M. Reading and R. A. Weale, “Macular pigment and chromatic aberration,” J. Opt. Soc. Am. 64, 231-234 (1974).
    [CrossRef] [PubMed]
  26. H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5, 444-454 (2005).
    [CrossRef]
  27. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607-614 (2000).
    [CrossRef]
  28. J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53-56 (1987).
  29. J. Pokorny, V. C. Smith, and M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618-1623 (1989).
    [CrossRef] [PubMed]
  30. J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263-267 (2004).
    [CrossRef]
  31. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008).
    [CrossRef] [PubMed]
  32. A. J. Zele, D. Cao, and J. Pokorny, “Rod-cone interactions and the temporal impulse response of the cone pathway,” Vision Res. 48, 2593-2598 (2008).
    [CrossRef] [PubMed]
  33. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161-171 (1975).
    [CrossRef] [PubMed]
  34. J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L:M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499-509 (2000).
    [CrossRef]
  35. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517-526 (2000).
    [CrossRef]
  36. J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding the Visual Process, B.B.Lee and A.Valberg, eds. (NATO Science Series, 1991), pp. 23-34.
    [CrossRef]
  37. Y. Le Grand and S. El Hage, Physiological Optics (Springer-Verlag, 1980).
  38. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152-4155 (1981).
    [CrossRef] [PubMed]
  39. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
    [CrossRef] [PubMed]
  40. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992).
    [CrossRef] [PubMed]
  41. D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 29, 300-311 (2009).
    [CrossRef] [PubMed]
  42. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900-8917 (2006).
    [CrossRef] [PubMed]

2009 (1)

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 29, 300-311 (2009).
[CrossRef] [PubMed]

2008 (4)

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008).
[CrossRef] [PubMed]

A. J. Zele, D. Cao, and J. Pokorny, “Rod-cone interactions and the temporal impulse response of the cone pathway,” Vision Res. 48, 2593-2598 (2008).
[CrossRef] [PubMed]

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

F. J. Rucker and D. Osorio, “The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast,” Vision Res. 48, 1929-1939 (2008).
[CrossRef] [PubMed]

2006 (2)

J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006).
[CrossRef]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900-8917 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5, 444-454 (2005).
[CrossRef]

J. M. Wood, D. A. Atchison, and A. Chaparro, “When red lights look yellow,” Invest. Ophthalmol. Visual Sci. 6, 4348-4352 (2005).
[CrossRef]

2004 (1)

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263-267 (2004).
[CrossRef]

2003 (1)

2002 (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

2001 (1)

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vision Res. 41, 1007-1021 (2001).
[CrossRef] [PubMed]

2000 (3)

1995 (1)

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

1994 (1)

1992 (2)

1991 (1)

J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding the Visual Process, B.B.Lee and A.Valberg, eds. (NATO Science Series, 1991), pp. 23-34.
[CrossRef]

1989 (3)

J. Pokorny, V. C. Smith, and M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618-1623 (1989).
[CrossRef] [PubMed]

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 349-360 (1989).
[CrossRef] [PubMed]

H. Uchikawa, K. Uchikawa, and R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881-890 (1989).
[CrossRef] [PubMed]

1987 (2)

R. L. Vimal, J. Pokorny, and V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309-1318 (1987).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53-56 (1987).

1986 (1)

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

1984 (2)

W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365-372 (1984).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

Y. Le Grand and S. El Hage, Physiological Optics (Springer-Verlag, 1980).

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

1974 (1)

1967 (1)

1964 (1)

1957 (1)

1951 (1)

R. W. Burnham, “The dependence of color upon area,” Am. J. Psychol. 64, 521-533 (1951).
[CrossRef] [PubMed]

1949 (2)

1948 (1)

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing-distance or field-size,” Nature 161, 484 (1948).
[CrossRef] [PubMed]

1947 (1)

1909 (1)

W. D. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London, Ser. A 83, 120-127 (1909).
[CrossRef]

Abney, W. D. W.

W. D. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London, Ser. A 83, 120-127 (1909).
[CrossRef]

Abramov, I.

Aggarwala, K. R.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

Atchison, D. A.

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 29, 300-311 (2009).
[CrossRef] [PubMed]

J. M. Wood, D. A. Atchison, and A. Chaparro, “When red lights look yellow,” Invest. Ophthalmol. Visual Sci. 6, 4348-4352 (2005).
[CrossRef]

Bedford, R. E.

Berendschot, T. T.

Blessing, E. M.

J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006).
[CrossRef]

Boynton, R. M.

H. Uchikawa, K. Uchikawa, and R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881-890 (1989).
[CrossRef] [PubMed]

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Brainard, D. H.

Burnham, R. W.

R. W. Burnham, “The dependence of color upon area,” Am. J. Psychol. 64, 521-533 (1951).
[CrossRef] [PubMed]

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984).
[CrossRef] [PubMed]

Buzas, P.

J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006).
[CrossRef]

Calderone, J. B.

Cao, D.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008).
[CrossRef] [PubMed]

A. J. Zele, D. Cao, and J. Pokorny, “Rod-cone interactions and the temporal impulse response of the cone pathway,” Vision Res. 48, 2593-2598 (2008).
[CrossRef] [PubMed]

Carroll, J.

Chan, H.

Chaparro, A.

J. M. Wood, D. A. Atchison, and A. Chaparro, “When red lights look yellow,” Invest. Ophthalmol. Visual Sci. 6, 4348-4352 (2005).
[CrossRef]

Cottaris, N. P.

Drexler, W.

El Hage, S.

Y. Le Grand and S. El Hage, Physiological Optics (Springer-Verlag, 1980).

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984).
[CrossRef] [PubMed]

Fernández, E. J.

Fisher, S. W.

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 29, 300-311 (2009).
[CrossRef] [PubMed]

Flitcroft, D. I.

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 349-360 (1989).
[CrossRef] [PubMed]

Forte, J. D.

J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006).
[CrossRef]

Gordon, J.

Griffin, D. R.

Guo, H.

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 29, 300-311 (2009).
[CrossRef] [PubMed]

Hartridge, H.

H. Hartridge, “Visibility of blue and yellow,” Nature 153, 775-776 (1949).
[CrossRef]

Hermann, B.

Hofer, H.

H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5, 444-454 (2005).
[CrossRef]

Holmes, M. C.

Horner, R. G.

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing-distance or field-size,” Nature 161, 484 (1948).
[CrossRef] [PubMed]

Howarth, P. A.

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Jacobs, G. H.

Jin, P. Q.

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vision Res. 41, 1007-1021 (2001).
[CrossRef] [PubMed]

Kingdom, F. A.

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

Kinney, J. A.

Knau, H.

Krauskopf, J.

Kremers, J.

Kruger, P. B.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

Kurtenbach, W.

Le Grand, Y.

Y. Le Grand and S. El Hage, Physiological Optics (Springer-Verlag, 1980).

Lutze, M.

Marcos, S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Marimont, D. H.

Martin, P. R.

J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006).
[CrossRef]

Mathews, S.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

McMahon, C.

Metha, A.

Middleton, W. E. K.

Neitz, J.

Neitz, M.

Nowbotsing, S.

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

Osorio, D.

F. J. Rucker and D. Osorio, “The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast,” Vision Res. 48, 1929-1939 (2008).
[CrossRef] [PubMed]

Pokorny, J.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008).
[CrossRef] [PubMed]

A. J. Zele, D. Cao, and J. Pokorny, “Rod-cone interactions and the temporal impulse response of the cone pathway,” Vision Res. 48, 2593-2598 (2008).
[CrossRef] [PubMed]

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263-267 (2004).
[CrossRef]

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vision Res. 41, 1007-1021 (2001).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding the Visual Process, B.B.Lee and A.Valberg, eds. (NATO Science Series, 1991), pp. 23-34.
[CrossRef]

J. Pokorny, V. C. Smith, and M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618-1623 (1989).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53-56 (1987).

R. L. Vimal, J. Pokorny, and V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309-1318 (1987).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

Považay, B.

Powell, I.

Prieto, P. M.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Purslow, E. T.

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing-distance or field-size,” Nature 161, 484 (1948).
[CrossRef] [PubMed]

Quinlan, J.

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263-267 (2004).
[CrossRef]

Reading, V. M.

Roorda, A.

Rucker, F. J.

F. J. Rucker and D. Osorio, “The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast,” Vision Res. 48, 1929-1939 (2008).
[CrossRef] [PubMed]

Scholl, H. P.

Sharpe, L. T.

Shevell, S. K.

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

Singer, B.

H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5, 444-454 (2005).
[CrossRef]

Smith, V. C.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008).
[CrossRef] [PubMed]

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vision Res. 41, 1007-1021 (2001).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding the Visual Process, B.B.Lee and A.Valberg, eds. (NATO Science Series, 1991), pp. 23-34.
[CrossRef]

J. Pokorny, V. C. Smith, and M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618-1623 (1989).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53-56 (1987).

R. L. Vimal, J. Pokorny, and V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309-1318 (1987).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

Smithson, H.

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263-267 (2004).
[CrossRef]

Spillmann, L.

Sternheim, C. E.

Thibos, L. N.

Uchikawa, H.

H. Uchikawa, K. Uchikawa, and R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881-890 (1989).
[CrossRef] [PubMed]

Uchikawa, K.

H. Uchikawa, K. Uchikawa, and R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881-890 (1989).
[CrossRef] [PubMed]

Unterhuber, A.

Usui, T.

Vabre, L.

Vimal, R. L.

R. L. Vimal, J. Pokorny, and V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309-1318 (1987).
[CrossRef] [PubMed]

Wald, G. A.

Wandell, B. A.

Weale, R. A.

Weitzman, D. O.

Wesner, M. F.

J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding the Visual Process, B.B.Lee and A.Valberg, eds. (NATO Science Series, 1991), pp. 23-34.
[CrossRef]

Williams, D. R.

Wood, J. M.

J. M. Wood, D. A. Atchison, and A. Chaparro, “When red lights look yellow,” Invest. Ophthalmol. Visual Sci. 6, 4348-4352 (2005).
[CrossRef]

Wyszecki, G.

Yamauchi, Y.

Ye, M.

Zele, A. J.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008).
[CrossRef] [PubMed]

A. J. Zele, D. Cao, and J. Pokorny, “Rod-cone interactions and the temporal impulse response of the cone pathway,” Vision Res. 48, 2593-2598 (2008).
[CrossRef] [PubMed]

Zhang, X.

Am. J. Psychol. (1)

R. W. Burnham, “The dependence of color upon area,” Am. J. Psychol. 64, 521-533 (1951).
[CrossRef] [PubMed]

Annu. Rev. Psychol. (1)

S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008).
[CrossRef]

Appl. Opt. (2)

Farbe (1)

J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53-56 (1987).

Invest. Ophthalmol. Visual Sci. (1)

J. M. Wood, D. A. Atchison, and A. Chaparro, “When red lights look yellow,” Invest. Ophthalmol. Visual Sci. 6, 4348-4352 (2005).
[CrossRef]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (8)

J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L:M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499-509 (2000).
[CrossRef]

J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517-526 (2000).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607-614 (2000).
[CrossRef]

N. P. Cottaris, “Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology,” J. Opt. Soc. Am. A 20, 1694-1713 (2003).
[CrossRef]

D. H. Marimont and B. A. Wandell, “Matching color images: the effects of axial chromatic aberration,” J. Opt. Soc. Am. A 11, 3113-3122 (1994).
[CrossRef]

W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365-372 (1984).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, and M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618-1623 (1989).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, and H. Chan, “Color appearance across the retina: effects of a white surround,” J. Opt. Soc. Am. A 9, 195-202 (1992).
[CrossRef] [PubMed]

J. Vision (2)

J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006).
[CrossRef]

H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5, 444-454 (2005).
[CrossRef]

Nature (3)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

H. Hartridge, “Visibility of blue and yellow,” Nature 153, 775-776 (1949).
[CrossRef]

R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing-distance or field-size,” Nature 161, 484 (1948).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 29, 300-311 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Optom. Vision Sci. (1)

P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

W. D. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London, Ser. A 83, 120-127 (1909).
[CrossRef]

Vision Res. (10)

S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984).
[CrossRef] [PubMed]

R. L. Vimal, J. Pokorny, and V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309-1318 (1987).
[CrossRef] [PubMed]

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 349-360 (1989).
[CrossRef] [PubMed]

H. Uchikawa, K. Uchikawa, and R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881-890 (1989).
[CrossRef] [PubMed]

V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vision Res. 41, 1007-1021 (2001).
[CrossRef] [PubMed]

F. J. Rucker and D. Osorio, “The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast,” Vision Res. 48, 1929-1939 (2008).
[CrossRef] [PubMed]

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008).
[CrossRef] [PubMed]

A. J. Zele, D. Cao, and J. Pokorny, “Rod-cone interactions and the temporal impulse response of the cone pathway,” Vision Res. 48, 2593-2598 (2008).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Visual Neurosci. (1)

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263-267 (2004).
[CrossRef]

Other (2)

J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding the Visual Process, B.B.Lee and A.Valberg, eds. (NATO Science Series, 1991), pp. 23-34.
[CrossRef]

Y. Le Grand and S. El Hage, Physiological Optics (Springer-Verlag, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A. Representation of stimulus (not to scale); angles are relative to the eye. B. Arrangement of components for generating the stimulus (not to scale).

Fig. 2
Fig. 2

Representation of the optical system: A 1 —aperture conjugate with the participant’s pupil; A 2 —field stop (5°); lenses L 1 L 4 ; mirrors M 1 M 6 with M 3 M 6 forming an optical trombone; TF—trial lenses; AC—lenses manipulating chromatic aberration; H—hot mirror; LED—infrared LEDs.

Fig. 3
Fig. 3

Group average ( n = 7 ) longitudinal chromatic aberration ( 4 mm ) for four lens conditions. To obtain the plots for each lens condition, the individual participant results were shifted vertically to minimize the variance in chromatic aberration of the group data across the wavelength range. Error bars indicate standard deviations.

Fig. 4
Fig. 4

Adaptive optics system for Experiment 2. See text for details.

Fig. 5
Fig. 5

Defocus producing change in appearance of the red light for the different lens conditions in Experiment 1. Results for each participant were manipulated so that the in-focus for 4 mm diameter was zero. Only two/seven participants saw the change in appearance with the 2 mm pupil and only five/seven with the triplet condition. Error bars show standard deviations.

Fig. 6
Fig. 6

Defocus producing change in appearance of the red light without and with adaptive optics correction of monochromatic aberrations at 4 mm and 6 mm pupil sizes in Experiment 2. Results for each participant were manipulated so that the in-focus for 4 mm diameter was zero. Error bars show standard deviations.

Fig. 7
Fig. 7

Minimum defocus producing maximum change in appearance of the 532 nm light with the different lens conditions for DAA and PG. The results for each participant were manipulated so that the in-focus condition was zero. Error bars show standard deviations.

Metrics