Abstract

Far-field intensities of light scattered from a linear centro-symmetric array illuminated by a plane wave of incident light are estimated at a series of detector angles. The intensities are computed from the superposition of E-fields scattered by the individual array elements. An average scattering phase function is used to model the scattered fields of individual array elements. The nature of scattering from the array is investigated using an image (θϕ plot) of the far-field intensities computed at a series of locations obtained by rotating the detector angle from 0° to 360°, corresponding to each angle of incidence in the interval [0° 360°]. The diffraction patterns observed from the θϕ plot are compared with those for isotropic scattering. In the absence of prior information on the array geometry, the intensities corresponding to θϕ pairs satisfying the Bragg condition are used to estimate the phase function. An algorithmic procedure is presented for this purpose and tested using synthetic data. The relative error between estimated and theoretical values of the phase function is shown to be determined by the mean spacing factor, the number of elements, and the far-field distance. An empirical relationship is presented to calculate the optimal far-field distance for a given specification of the percentage error.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Law of normal scattering--a comprehensive law for wave propagation at an interface

Joseph Kurusingal
J. Opt. Soc. Am. A 24(1) 98-108 (2007)

Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: model development and validation

Shuai Hu, Taichang Gao, Hao Li, Bo Yang, Feng Zhang, Ming Chen, and Lei Liu
Opt. Express 25(2) 1463-1486 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription