Abstract

Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c40 (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot easily be assessed from these summary aberration measures. A method was developed for estimating various optical variables relevant to visual perception from summary wave-front analysis data. These variables were the myopic shift (the difference in the optimal focus between high and low spatial frequencies, a threat to the simultaneous in-focus viewing of fine and coarse patterns), the depth-of-focus (at 8 cpd), and the modulation transfer at high (16 cpd; reading small print) and low (4 cpd; edge detection) spatial frequencies. The depth-of-focus was defined in two ways: using a relative measure (the full width at half-height of the through-focus curve) and an absolute measure (the range where the through-focus curve exceeds a predefined modulation transfer value). The method was shown to be accurate by using previously published contrast sensitivity data and wave-front analysis data. The applicability of the method was illustrated by applying the method to wave-front analysis measurements performed in pseudophakic patients with aspheric and spherical intraocular lenses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ames and C. A. Proctor, “Dioptrics of the eye,” J. Opt. Soc. Am. 5, 22-84 (1921).
    [CrossRef]
  2. G. von Bahr, “Investigations into the spherical and chromatic aberrations of the eye, and their influence on its refraction,” Acta Ophthalmol. 23, 1-47 (1945).
    [CrossRef]
  3. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” J. Opt. Soc. Am. 39, 370-376 (1949).
    [CrossRef] [PubMed]
  4. H. Schober, H. Munker, and F. Zolleis, “Die Aberrationen des menschlichen Auges und ihre Messung,” Opt. Acta 15, 47-57 (1968).
    [CrossRef]
  5. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
    [CrossRef] [PubMed]
  6. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  7. R. I. Calver, M. J. Cox, and D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069-2078 (1999).
    [CrossRef]
  8. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  9. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef]
  10. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137-143 (2002).
    [CrossRef]
  11. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064-2074 (2006).
    [CrossRef]
  12. S. C. Goebels, G. U. Auffarth, and M. P. Holzer, “Lokalisation und altersabhangige Verteilung von Aberrationen des Auges,” Ophthalmologe 9, 825-831 (2008).
    [CrossRef]
  13. D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48, 2224-2231 (2008).
    [CrossRef] [PubMed]
  14. F. Zernike, “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Physica (Amsterdam) 1, 689-704 (1934).
    [CrossRef]
  15. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]
  16. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.
  17. N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiol. Opt. 18, 504-513 (1998).
    [CrossRef]
  18. P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
    [CrossRef] [PubMed]
  19. P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007).
    [PubMed]
  20. H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48, 1804-1811 (2008).
    [CrossRef] [PubMed]
  21. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009).
    [CrossRef]
  22. D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. 55, 1154-1157 (1965).
    [CrossRef]
  23. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
    [CrossRef]
  24. W. N. Charman and J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119-134 (1976).
    [PubMed]
  25. T. Olsen, “On the Stiles-Crawford effect and ocular imagery,” Acta Ophthalmol. 71, 85-88 (1993).
    [CrossRef]
  26. N. M. Jansonius and A. C. Kooijman, “The effect of defocus on edge contrast sensitivity,” Ophthalmic Physiol. Opt. 17, 128-132 (1997).
    [CrossRef] [PubMed]
  27. P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1972).
  28. H. H. Emsley, Visual Optics (Butterworth, 1952).
  29. B. H. Crawford, “The Stiles-Crawford effects and their significance in vision,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 470-483.
  30. Y. L. Grand, “Spectral luminosity,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 413-433.
  31. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321-336 (1947).
    [CrossRef] [PubMed]
  32. G. van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233-244 (1962).
    [CrossRef]
  33. G. E. Legge, K. T. Mullen, G. C. Woo, and F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4, 851-863 (1987).
    [CrossRef] [PubMed]
  34. A. J. Thomasian, The Structure of Probability Theory with Applications (McGraw-Hill, 1969).
  35. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
    [CrossRef] [PubMed]
  36. Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
    [CrossRef]
  37. M. Francon, “Aberration spherique chromatisme et pouvoir separateur de l'oeil,” Revue d'Optique 30, 71-80 (1951).
  38. A. Ivanoff, “About the spherical aberration of the eye,” J. Opt. Soc. Am. 46, 901-903 (1956).
    [CrossRef] [PubMed]
  39. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
    [CrossRef]
  40. L. Lundstrom, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192-2198 (2009).
    [CrossRef]
  41. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).
  42. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
    [PubMed]
  43. P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refractive Surg. 35, 962-963 (2009).
    [CrossRef]
  44. K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010).
    [CrossRef]
  45. P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
    [PubMed]
  46. U. Mester and H. Kaymak, “Comparison of the AcrySof IQ aspheric blue light filter and the AcrySof SA60AT intraocular lenses,” J. Refract. Surg. 24, 817-825 (2008).
    [PubMed]
  47. K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
    [CrossRef] [PubMed]
  48. M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
    [CrossRef]
  49. T. Kohnen, O. K. Klaproth, and J. Buehren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116, 1697-1706 (2009).
    [CrossRef] [PubMed]
  50. G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
    [CrossRef]
  51. H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008).
    [CrossRef]
  52. P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008).
    [CrossRef] [PubMed]
  53. R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33, 203-209 (2007).
    [CrossRef]
  54. B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
    [CrossRef]
  55. S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008).
    [CrossRef] [PubMed]
  56. D. B. Elliot, M. A. Bullimore, and I. L. Bailey, “Improving the reliability of the Pelli-Robson contrast sensitivity test,” Clin. Vision Sci. 6, 471-475 (1991).
  57. Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
    [CrossRef] [PubMed]
  58. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
    [CrossRef] [PubMed]
  59. M. T. Sheehan, A. V. Goncharov, V. M. O'Dwyer, V. Toal, and C. Dainty, “Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field,” Opt. Express 15, 7367-7380 (2007).
    [CrossRef] [PubMed]
  60. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002).
    [CrossRef] [PubMed]
  61. M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
    [CrossRef]
  62. L. N. Thibos, “Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations,” Ophthalmic Physiol. Opt. 29, 288-291 (2009).
    [CrossRef] [PubMed]
  63. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558-578 (1966).
  64. J. A. Solomon and D. G. Pelli, “The visual channel mediating letter identification,” Nature 369, 395-397 (1994).
    [CrossRef] [PubMed]
  65. S. G. Whittaker and J. Lovie-Kitchin, “Visual requirements for reading,” Optom. Vision Sci. 70, 54-65 (1993).
    [CrossRef]

2010 (1)

K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010).
[CrossRef]

2009 (6)

L. Lundstrom, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192-2198 (2009).
[CrossRef]

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
[CrossRef]

T. Kohnen, O. K. Klaproth, and J. Buehren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116, 1697-1706 (2009).
[CrossRef] [PubMed]

L. N. Thibos, “Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations,” Ophthalmic Physiol. Opt. 29, 288-291 (2009).
[CrossRef] [PubMed]

P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refractive Surg. 35, 962-963 (2009).
[CrossRef]

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009).
[CrossRef]

2008 (7)

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48, 1804-1811 (2008).
[CrossRef] [PubMed]

S. C. Goebels, G. U. Auffarth, and M. P. Holzer, “Lokalisation und altersabhangige Verteilung von Aberrationen des Auges,” Ophthalmologe 9, 825-831 (2008).
[CrossRef]

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48, 2224-2231 (2008).
[CrossRef] [PubMed]

S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008).
[CrossRef] [PubMed]

U. Mester and H. Kaymak, “Comparison of the AcrySof IQ aspheric blue light filter and the AcrySof SA60AT intraocular lenses,” J. Refract. Surg. 24, 817-825 (2008).
[PubMed]

H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008).
[CrossRef]

P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008).
[CrossRef] [PubMed]

2007 (4)

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33, 203-209 (2007).
[CrossRef]

B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
[CrossRef]

M. T. Sheehan, A. V. Goncharov, V. M. O'Dwyer, V. Toal, and C. Dainty, “Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field,” Opt. Express 15, 7367-7380 (2007).
[CrossRef] [PubMed]

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

2006 (4)

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064-2074 (2006).
[CrossRef]

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
[CrossRef]

P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
[PubMed]

2005 (1)

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

2004 (2)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
[CrossRef]

2002 (8)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiol. Opt. 18, 504-513 (1998).
[CrossRef]

1997 (1)

N. M. Jansonius and A. C. Kooijman, “The effect of defocus on edge contrast sensitivity,” Ophthalmic Physiol. Opt. 17, 128-132 (1997).
[CrossRef] [PubMed]

1994 (2)

1993 (2)

S. G. Whittaker and J. Lovie-Kitchin, “Visual requirements for reading,” Optom. Vision Sci. 70, 54-65 (1993).
[CrossRef]

T. Olsen, “On the Stiles-Crawford effect and ocular imagery,” Acta Ophthalmol. 71, 85-88 (1993).
[CrossRef]

1991 (1)

D. B. Elliot, M. A. Bullimore, and I. L. Bailey, “Improving the reliability of the Pelli-Robson contrast sensitivity test,” Clin. Vision Sci. 6, 471-475 (1991).

1987 (1)

1976 (2)

W. N. Charman and J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119-134 (1976).
[PubMed]

R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976).
[CrossRef]

1974 (1)

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
[CrossRef]

1972 (3)

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1972).

B. H. Crawford, “The Stiles-Crawford effects and their significance in vision,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 470-483.

Y. L. Grand, “Spectral luminosity,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 413-433.

1969 (1)

A. J. Thomasian, The Structure of Probability Theory with Applications (McGraw-Hill, 1969).

1968 (1)

H. Schober, H. Munker, and F. Zolleis, “Die Aberrationen des menschlichen Auges und ihre Messung,” Opt. Acta 15, 47-57 (1968).
[CrossRef]

1966 (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558-578 (1966).

1965 (1)

1962 (1)

G. van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233-244 (1962).
[CrossRef]

1956 (1)

1952 (1)

H. H. Emsley, Visual Optics (Butterworth, 1952).

1951 (1)

M. Francon, “Aberration spherique chromatisme et pouvoir separateur de l'oeil,” Revue d'Optique 30, 71-80 (1951).

1949 (1)

1947 (1)

1945 (1)

G. von Bahr, “Investigations into the spherical and chromatic aberrations of the eye, and their influence on its refraction,” Acta Ophthalmol. 23, 1-47 (1945).
[CrossRef]

1934 (1)

F. Zernike, “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Physica (Amsterdam) 1, 689-704 (1934).
[CrossRef]

1921 (1)

Ahn, H.

S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008).
[CrossRef] [PubMed]

Akaishi, L.

P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008).
[CrossRef] [PubMed]

Albarran-Diego, C.

G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
[CrossRef]

Alio, J. L.

G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
[CrossRef]

Ames, A.

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.

Artal, P.

P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refractive Surg. 35, 962-963 (2009).
[CrossRef]

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48, 2224-2231 (2008).
[CrossRef] [PubMed]

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48, 1804-1811 (2008).
[CrossRef] [PubMed]

Auffarth, G. U.

S. C. Goebels, G. U. Auffarth, and M. P. Holzer, “Lokalisation und altersabhangige Verteilung von Aberrationen des Auges,” Ophthalmologe 9, 825-831 (2008).
[CrossRef]

Bailey, I. L.

D. B. Elliot, M. A. Bullimore, and I. L. Bailey, “Improving the reliability of the Pelli-Robson contrast sensitivity test,” Clin. Vision Sci. 6, 471-475 (1991).

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

Behndig, A.

B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
[CrossRef]

Bellucci, R.

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33, 203-209 (2007).
[CrossRef]

Benito, A.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Berrio, E.

Bille, J. F.

Birt, B. J.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48, 1804-1811 (2008).
[CrossRef] [PubMed]

Boteon, J. E.

P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008).
[CrossRef] [PubMed]

Bottos, J.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

Bottos, K.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

Boyce, J.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
[CrossRef]

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

Buehren, J.

T. Kohnen, O. K. Klaproth, and J. Buehren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116, 1697-1706 (2009).
[CrossRef] [PubMed]

Bullimore, M. A.

D. B. Elliot, M. A. Bullimore, and I. L. Bailey, “Improving the reliability of the Pelli-Robson contrast sensitivity test,” Clin. Vision Sci. 6, 471-475 (1991).

Cagigal, M. P.

Calver, R. I.

Campbell, F. W.

Canales, V. F.

Castejon-Mochon, J. F.

M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
[CrossRef]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Chalita, M. R.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman and J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119-134 (1976).
[PubMed]

Chateau, N.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009).
[CrossRef]

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

Cheng, X.

Chowdhry, M.

P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
[PubMed]

Cox, I. G.

Cox, M. J.

Crawford, B. H.

B. H. Crawford, “The Stiles-Crawford effects and their significance in vision,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 470-483.

Dainty, C.

Elliot, D. B.

D. B. Elliot, M. A. Bullimore, and I. L. Bailey, “Improving the reliability of the Pelli-Robson contrast sensitivity test,” Clin. Vision Sci. 6, 471-475 (1991).

Elliott, D. B.

Emsley, H. H.

H. H. Emsley, Visual Optics (Butterworth, 1952).

Fernandez, E. J.

P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

Fernandez de Castro, L. E.

H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008).
[CrossRef]

Fidler, V.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

Francon, M.

M. Francon, “Aberration spherique chromatisme et pouvoir separateur de l'oeil,” Revue d'Optique 30, 71-80 (1951).

Geraghty, E.

Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

Goebels, S. C.

S. C. Goebels, G. U. Auffarth, and M. P. Holzer, “Lokalisation und altersabhangige Verteilung von Aberrationen des Auges,” Ophthalmologe 9, 825-831 (2008).
[CrossRef]

Goelz, S.

Goncharov, A. V.

Grand, Y. L.

Y. L. Grand, “Spectral luminosity,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 413-433.

Green, D. G.

Griffin, D. R.

Grimm, B.

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558-578 (1966).

Guirao, A.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

Guo, H.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48, 1804-1811 (2008).
[CrossRef] [PubMed]

Gustafsson, J.

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Holzer, M. P.

S. C. Goebels, G. U. Auffarth, and M. P. Holzer, “Lokalisation und altersabhangige Verteilung von Aberrationen des Auges,” Ophthalmologe 9, 825-831 (2008).
[CrossRef]

Hong, X.

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

Ivanoff, A.

Jansonius, N. M.

K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010).
[CrossRef]

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiol. Opt. 18, 504-513 (1998).
[CrossRef]

N. M. Jansonius and A. C. Kooijman, “The effect of defocus on edge contrast sensitivity,” Ophthalmic Physiol. Opt. 17, 128-132 (1997).
[CrossRef] [PubMed]

Jayasree, R.

P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
[PubMed]

Jennings, J. A. M.

W. N. Charman and J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119-134 (1976).
[PubMed]

Johansson, B.

B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
[CrossRef]

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

Kaymak, H.

U. Mester and H. Kaymak, “Comparison of the AcrySof IQ aspheric blue light filter and the AcrySof SA60AT intraocular lenses,” J. Refract. Surg. 24, 817-825 (2008).
[PubMed]

Kim, E. K.

S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008).
[CrossRef] [PubMed]

Kim, T. I.

S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008).
[CrossRef] [PubMed]

King-Smith, P. E.

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1972).

Klaproth, O. K.

T. Kohnen, O. K. Klaproth, and J. Buehren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116, 1697-1706 (2009).
[CrossRef] [PubMed]

Kohnen, T.

T. Kohnen, O. K. Klaproth, and J. Buehren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116, 1697-1706 (2009).
[CrossRef] [PubMed]

Kooijman, A. C.

K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010).
[CrossRef]

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiol. Opt. 18, 504-513 (1998).
[CrossRef]

N. M. Jansonius and A. C. Kooijman, “The effect of defocus on edge contrast sensitivity,” Ophthalmic Physiol. Opt. 17, 128-132 (1997).
[CrossRef] [PubMed]

Koomen, M.

Koopmans, S. A.

K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010).
[CrossRef]

Koranyi, G.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Krueger, R. R.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009).
[CrossRef]

Kulikowski, J. J.

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1972).

Lamers, P.

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

Legge, G. E.

Liang, J.

Lopez-Gil, N.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

M. P. Cagigal, V. F. Canales, J. F. Castejon-Mochon, P. M. Prieto, N. Lopez-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37-39 (2002).
[CrossRef]

Lovie-Kitchin, J.

S. G. Whittaker and J. Lovie-Kitchin, “Visual requirements for reading,” Optom. Vision Sci. 70, 54-65 (1993).
[CrossRef]

Lundstrom, L.

Mager, A.

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

Manzanera, S.

P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

Markwell, E. L.

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48, 2224-2231 (2008).
[CrossRef] [PubMed]

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

Marshall, J.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
[CrossRef]

Mester, U.

U. Mester and H. Kaymak, “Comparison of the AcrySof IQ aspheric blue light filter and the AcrySof SA60AT intraocular lenses,” J. Refract. Surg. 24, 817-825 (2008).
[PubMed]

Montes-Mico, R.

G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
[CrossRef]

Morimoto, L.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

Morselli, S.

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33, 203-209 (2007).
[CrossRef]

Mullen, K. T.

Munker, H.

H. Schober, H. Munker, and F. Zolleis, “Die Aberrationen des menschlichen Auges und ihre Messung,” Opt. Acta 15, 47-57 (1968).
[CrossRef]

Munoz, G.

G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
[CrossRef]

Nanavaty, M. A.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
[CrossRef]

Nio, Y. K.

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

Noll, R. J.

Norrby, N. E.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Norrby, S.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

Nose, W.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

O'Dwyer, V. M.

Olsen, T.

T. Olsen, “On the Stiles-Crawford effect and ocular imagery,” Acta Ophthalmol. 71, 85-88 (1993).
[CrossRef]

Padmanabhan, P.

P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
[PubMed]

Pelli, D. G.

J. A. Solomon and D. G. Pelli, “The visual channel mediating letter identification,” Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

Piers, P.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

Piers, P. A.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Porter, J.

Prieto, P. M.

Proctor, C. A.

Pucci, V.

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33, 203-209 (2007).
[CrossRef]

Rao, S. K.

P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
[PubMed]

Redondo, M.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

Rocha, K. M.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009).
[CrossRef]

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

Rodriguez-Galietero, A.

G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
[CrossRef]

Roorda, A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

Roy, J.

P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
[PubMed]

Saha, S.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
[CrossRef]

Salmon, T. O.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064-2074 (2006).
[CrossRef]

Sandoval, H. P.

H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008).
[CrossRef]

Schober, H.

H. Schober, H. Munker, and F. Zolleis, “Die Aberrationen des menschlichen Auges und ihre Messung,” Opt. Acta 15, 47-57 (1968).
[CrossRef]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.

Scolnik, R.

Sheehan, M. T.

Solomon, J. A.

J. A. Solomon and D. G. Pelli, “The visual channel mediating letter identification,” Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

Solomon, K. D.

H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008).
[CrossRef]

Soriano, E. S.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

Spalton, D. J.

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
[CrossRef]

Sundelin, S.

B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
[CrossRef]

Thibos, L. N.

L. N. Thibos, “Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations,” Ophthalmic Physiol. Opt. 29, 288-291 (2009).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.

Thomasian, A. J.

A. J. Thomasian, The Structure of Probability Theory with Applications (McGraw-Hill, 1969).

Toal, V.

Tousey, R.

Trindade, F. C.

P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008).
[CrossRef] [PubMed]

Tzelikis, P. F.

P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008).
[CrossRef] [PubMed]

Unsbo, P.

L. Lundstrom, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192-2198 (2009).
[CrossRef]

B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
[CrossRef]

Vabre, L.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009).
[CrossRef]

van de Pol, C.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064-2074 (2006).
[CrossRef]

van den Brink, G.

G. van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233-244 (1962).
[CrossRef]

van der Mooren, M.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

van Gaalen, K. W.

K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010).
[CrossRef]

van Meeteren, A.

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
[CrossRef]

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

von Bahr, G.

G. von Bahr, “Investigations into the spherical and chromatic aberrations of the eye, and their influence on its refraction,” Acta Ophthalmol. 23, 1-47 (1945).
[CrossRef]

Vroman, D. T.

H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008).
[CrossRef]

Wald, G.

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.

Weeber, H. A.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

Whittaker, S. G.

S. G. Whittaker and J. Lovie-Kitchin, “Visual requirements for reading,” Optom. Vision Sci. 70, 54-65 (1993).
[CrossRef]

Wikberg-Matsson, A.

B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
[CrossRef]

Williams, D. R.

Woo, G. C.

Yamada, A. C.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

Zeinstra, J.

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

Zernike, F.

F. Zernike, “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Physica (Amsterdam) 1, 689-704 (1934).
[CrossRef]

Zolleis, F.

H. Schober, H. Munker, and F. Zolleis, “Die Aberrationen des menschlichen Auges und ihre Messung,” Opt. Acta 15, 47-57 (1968).
[CrossRef]

Acta Ophthalmol. (2)

G. von Bahr, “Investigations into the spherical and chromatic aberrations of the eye, and their influence on its refraction,” Acta Ophthalmol. 23, 1-47 (1945).
[CrossRef]

T. Olsen, “On the Stiles-Crawford effect and ocular imagery,” Acta Ophthalmol. 71, 85-88 (1993).
[CrossRef]

Am. J. Ophthalmol. (2)

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142, 750-756.e3 (2006).
[CrossRef] [PubMed]

P. F. Tzelikis, L. Akaishi, F. C. Trindade, and J. E. Boteon, “Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study,” Am. J. Ophthalmol. 145, 827-833.e1 (2008).
[CrossRef] [PubMed]

Arch. Ophthalmol. (Chicago) (1)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).

Br. J. Physiol. Opt. (1)

W. N. Charman and J. A. M. Jennings, “The optical quality of the monochromatic retinal image as a function of focus,” Br. J. Physiol. Opt. 31, 119-134 (1976).
[PubMed]

Clin. Vision Sci. (1)

D. B. Elliot, M. A. Bullimore, and I. L. Bailey, “Improving the reliability of the Pelli-Robson contrast sensitivity test,” Clin. Vision Sci. 6, 471-475 (1991).

Eye (2)

H. P. Sandoval, L. E. Fernandez de Castro, D. T. Vroman, and K. D. Solomon, “Comparison of visual outcomes, photopic contrast sensitivity, wavefront analysis, and patient satisfaction following cataract extraction and IOL implantation: aspheric vs spherical acrylic lenses,” Eye 22, 1469-1475 (2008).
[CrossRef]

S. W. Kim, H. Ahn, E. K. Kim, and T. I. Kim, “Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses,” Eye 22, 1493-1498 (2008).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

P. A. Piers, S. Norrby, E. J. Fernandez, S. Manzanera, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration: potential improvements provided by customized correction of spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

J. Cataract Refractive Surg. (8)

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064-2074 (2006).
[CrossRef]

Y. K. Nio, N. M. Jansonius, E. Geraghty, S. Norrby, and A. C. Kooijman, “Effect of intraocular lens implantation on visual acuity, contrast sensitivity, and depth of focus,” J. Cataract Refractive Surg. 29, 2073-2081 (2003).
[CrossRef]

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refractive Surg. 35, 1885-1892 (2009).
[CrossRef]

R. Bellucci, S. Morselli, and V. Pucci, “Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes,” J. Cataract Refractive Surg. 33, 203-209 (2007).
[CrossRef]

B. Johansson, S. Sundelin, A. Wikberg-Matsson, P. Unsbo, and A. Behndig, “Visual and optical performance of the Akreos Adapt Advanced Optics and Tecnis Z9000 intraocular lenses: Swedish multicenter study,” J. Cataract Refractive Surg. 33, 1565-1572 (2007).
[CrossRef]

M. A. Nanavaty, D. J. Spalton, J. Boyce, S. Saha, and J. Marshall, “Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study,” J. Cataract Refractive Surg. 35, 663-671 (2009).
[CrossRef]

G. Munoz, C. Albarran-Diego, R. Montes-Mico, A. Rodriguez-Galietero, and J. L. Alio, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32, 1320-1327 (2006).
[CrossRef]

P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refractive Surg. 35, 962-963 (2009).
[CrossRef]

J. Cataract Refractive Surgery (1)

K. W. van Gaalen, S. A. Koopmans, N. M. Jansonius, and A. C. Kooijman, “The optical performance of aspheric and spherical intraocular lenses,” J. Cataract Refractive Surgery 36, 34-43 (2010).
[CrossRef]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (2)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558-578 (1966).

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1972).

J. Refract. Surg. (4)

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

P. Padmanabhan, S. K. Rao, R. Jayasree, M. Chowdhry, and J. Roy, “Monochromatic aberrations in eyes with different intraocular lens optic designs,” J. Refract. Surg. 22, 172-177 (2006).
[PubMed]

U. Mester and H. Kaymak, “Comparison of the AcrySof IQ aspheric blue light filter and the AcrySof SA60AT intraocular lenses,” J. Refract. Surg. 24, 817-825 (2008).
[PubMed]

J. Vision (1)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272-280 (2004).
[CrossRef]

Nature (1)

J. A. Solomon and D. G. Pelli, “The visual channel mediating letter identification,” Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (7)

L. N. Thibos, “Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations,” Ophthalmic Physiol. Opt. 29, 288-291 (2009).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, P. Lamers, A. Mager, J. Zeinstra, and A. C. Kooijman, “Influence of the rate of contrast change on the quality of contrast sensitivity assessment: a comparison of three psychophysical methods,” Ophthalmic Physiol. Opt. 25, 18-26 (2005).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiol. Opt. 18, 504-513 (1998).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103-112 (2002).
[CrossRef] [PubMed]

N. M. Jansonius and A. C. Kooijman, “The effect of defocus on edge contrast sensitivity,” Ophthalmic Physiol. Opt. 17, 128-132 (1997).
[CrossRef] [PubMed]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Age-related changes of defocus-specific contrast sensitivity in healthy subjects,” Ophthalmic Physiol. Opt. 20, 323-334 (2000).
[CrossRef] [PubMed]

Ophthalmologe (1)

S. C. Goebels, G. U. Auffarth, and M. P. Holzer, “Lokalisation und altersabhangige Verteilung von Aberrationen des Auges,” Ophthalmologe 9, 825-831 (2008).
[CrossRef]

Ophthalmology (1)

T. Kohnen, O. K. Klaproth, and J. Buehren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116, 1697-1706 (2009).
[CrossRef] [PubMed]

Opt. Acta (2)

H. Schober, H. Munker, and F. Zolleis, “Die Aberrationen des menschlichen Auges und ihre Messung,” Opt. Acta 15, 47-57 (1968).
[CrossRef]

A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optom. Vision Sci. (1)

S. G. Whittaker and J. Lovie-Kitchin, “Visual requirements for reading,” Optom. Vision Sci. 70, 54-65 (1993).
[CrossRef]

Physica (Amsterdam) (1)

F. Zernike, “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode,” Physica (Amsterdam) 1, 689-704 (1934).
[CrossRef]

Revue d'Optique (1)

M. Francon, “Aberration spherique chromatisme et pouvoir separateur de l'oeil,” Revue d'Optique 30, 71-80 (1951).

Vision Res. (4)

G. van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233-244 (1962).
[CrossRef]

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48, 1804-1811 (2008).
[CrossRef] [PubMed]

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48, 2224-2231 (2008).
[CrossRef] [PubMed]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Other (5)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” in Trends in Optics and Photonics, V.Lakshminarayanan, ed. (Optical Society of America, 2000), pp. 232-244.

A. J. Thomasian, The Structure of Probability Theory with Applications (McGraw-Hill, 1969).

H. H. Emsley, Visual Optics (Butterworth, 1952).

B. H. Crawford, “The Stiles-Crawford effects and their significance in vision,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 470-483.

Y. L. Grand, “Spectral luminosity,” in Handbook of Sensory Physiology VII-4, D.Jameson and L.M.Hurvich, eds. (Springer, 1972), pp. 413-433.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Contrast sensitivity as a function of defocus at low (4 cpd) and high (16 cpd) spatial frequencies (adapted from Nio et al. [35]).

Fig. 2
Fig. 2

Spherical aberration measure α ( mean ± standard   error ) as a function of age, determined by using contrast sensitivity data from Nio et al. (cross, [5, 35]) and in several wave-front analysis studies (plus sign, Porter et al. [8]; asterisk, Thibos et al. [9]; empty square, Calver et al. [7]; filled square, Atchison and Markwell [13]; empty circle, Cheng et al. [39]).

Fig. 3
Fig. 3

Ideal wave front wf i converging into focal point F o and wave front due to spherical aberration, wf SA , converging into a range of focal points F ( r ) with F ( 0 ) = F o ( D = pupil diameter, s = distance between a plane perpendicular to the optical axis located in the pupil and the wave front due to spherical aberration).

Tables (5)

Tables Icon

Table 1 MS, Relative and Absolute DOFs, Maximum MT at 4 and 16 cpd, and MT at 4 cpd with Optimal Focus for Small Optotypes as a Function of Spherical and Irregular Aberrations, for a Pupil Diameter of 4 mm and White Light a

Tables Icon

Table 2 MS, Relative and Absolute DOFs, Maximum MT at 4 and 16 cpd, and MT at 4 cpd with Optimal Focus for Small Optotypes as a Function of Spherical and Irregular Aberrations, for a Pupil Diameter of 5 mm and White Light a

Tables Icon

Table 3 MS, Relative and Absolute DOFs, Maximum MT at 4 and 16 cpd, and MT at 4 cpd with Optimal Focus for Small Optotypes as a Function of Spherical and Irregular Aberrations, for a Pupil Diameter of 6 mm and White Light a

Tables Icon

Table 4 Parameters a i , , f i as Defined in Eqs. (3, 4, 5, 6, 7, 8) a

Tables Icon

Table 5 MS, Relative and Absolute DOFs, Maximum MT at 4 and 16 cpd, and MT at 4 cpd with Optimal Focus for Small Optotypes as calculated from Aberration Coefficient c 4 0 and an Overall Measure of all Higher-Order Aberrations, for Pseudophakic Eyes with Various Types of IOLs [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], Phakic Eyes [11], and a Hypothetical Eye without Higher-Order Aberrations, for a Pupil Diameter of 5 mm and White Light a

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

P s a ( r ) = α r 2 ,
P i a = β e ( x , y ) ,
MS = a 0 + a 1 α + a 2 β + a 3 D ,
DOF r = b 0 + b 1 α + b 2 β + b 3 D ,
DOF a = c 0 + c 1 α + c 2 β + c 3 D ,
MT 4 = d 0 + d 1 α + d 2 β + d 3 D ,
MT 16 = e 0 + e 1 α + e 2 β + e 3 D ,
MT opt = f 0 + f 1 α + f 2 β + f 3 D ,
α = b 2 ( MS a 0 a 3 D ) a 2 ( DOF r b 0 b 3 D ) a 1 b 2 a 2 b 1 ,
β = b 1 ( MS a 0 a 3 D ) + a 1 ( DOF r b 0 b 3 D ) a 1 b 2 a 2 b 1 .
α = 24 5 c 4 0 ( D / 2 ) 4 ,
HOA β = HOA 2 ( c 4 0 ) 2 ,
β = 16 3 HOA β π / 2 D 2 .
w = 6 5 c 4 0 ,
s = r 2 2 f 0 + a r 4 ,
d s d r = r f 0 + 4 a r 3 .
d s d r r f ( r ) ,
1 f 1 f 0 = 4 a r 2 ,
P s a ( r ) = 4 n a r 2 ,
n a r 4 = P s a r 2 / 4 = α r 4 / 4 ,

Metrics