T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Med. Instrum. 86, 1029–1032 (2009).

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

T. A. Germer, “SCATMECH: Polarized Light Scattering C++ Class Library,” available online at http://physics.nist.gov/scatmech (2008).

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

B. Yaakobovitz, Y. Cohen, and Y. Tsur, “Line edge roughness detection using deep UV light scatterometry,” Microelectron. Eng. 84, 619–625 (2007).

[CrossRef]

T. A. Germer, “Effect of line and trench profile variation on specular and diffuse reflectance from a periodic structure,” J. Opt. Soc. Am. A 24, 696–701 (2007).

[CrossRef]

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

G. M. Gallatin, “Resist blur and line edge roughness,” Proc. SPIE 5754, 38–52 (2005).

[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Toward a complete description of linewidth roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).

[CrossRef]

K. Huang, B. J. Rice, B. Coombs, and R. Freed, “Methods For evaluating lithographic performance of exposure tools for the 45-nm node: ECD and scatterometry,” Proc. SPIE 5375, 494–502 (2004).

[CrossRef]

V. Constantoudis, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Microlithogr., Microfabr., Microsyst. 3, 429–435 (2004).

[CrossRef]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists II: scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).

[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. a comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).

[CrossRef]

E. Barouch, and S. L. Knodle, “Scatterometry as a practical in-situ metrology technology,” Proc. SPIE 5038, 559–567 (2003).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

T. G. Makay, “Homogenization of linear and nonlinear complex composite materials,” in Introduction to Complex Mediums for Optics and Electromagnetics, W.S.Weiglhofer, A.Lakhtakia, eds., (SPIE, Bellingham, Washington, 2003), pp. 317–346.

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

D. Ronnow, S. K. Anderson, and G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).

[CrossRef]

H. G. Tompkins, A User’s Guide to Ellipsometry (Academic, 1993).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980) pp. 705–708.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).

[CrossRef]

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Proc. R. Soc. London, Ser. A 205, 237–288 (1906).

L. Rayleigh, “On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen,” Philos. Mag. 44, 28–52 (1897).

[CrossRef]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

D. Ronnow, S. K. Anderson, and G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).

[CrossRef]

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).

[CrossRef]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

E. Barouch, and S. L. Knodle, “Scatterometry as a practical in-situ metrology technology,” Proc. SPIE 5038, 559–567 (2003).

[CrossRef]

J. Bischoff, E. Drege, and S. Yedur, “Edge Roughness Measurement In Optical Metrology,” US Patent 7,046,375, 16 May 2006.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980) pp. 705–708.

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

B. Yaakobovitz, Y. Cohen, and Y. Tsur, “Line edge roughness detection using deep UV light scatterometry,” Microelectron. Eng. 84, 619–625 (2007).

[CrossRef]

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Toward a complete description of linewidth roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).

[CrossRef]

V. Constantoudis, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Microlithogr., Microfabr., Microsyst. 3, 429–435 (2004).

[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. a comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).

[CrossRef]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists II: scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).

[CrossRef]

K. Huang, B. J. Rice, B. Coombs, and R. Freed, “Methods For evaluating lithographic performance of exposure tools for the 45-nm node: ECD and scatterometry,” Proc. SPIE 5375, 494–502 (2004).

[CrossRef]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

J. Bischoff, E. Drege, and S. Yedur, “Edge Roughness Measurement In Optical Metrology,” US Patent 7,046,375, 16 May 2006.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

K. Huang, B. J. Rice, B. Coombs, and R. Freed, “Methods For evaluating lithographic performance of exposure tools for the 45-nm node: ECD and scatterometry,” Proc. SPIE 5375, 494–502 (2004).

[CrossRef]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Med. Instrum. 86, 1029–1032 (2009).

G. M. Gallatin, “Resist blur and line edge roughness,” Proc. SPIE 5754, 38–52 (2005).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

V. Constantoudis, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Microlithogr., Microfabr., Microsyst. 3, 429–435 (2004).

[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Toward a complete description of linewidth roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).

[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. a comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).

[CrossRef]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists II: scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. a comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).

[CrossRef]

K. Huang, B. J. Rice, B. Coombs, and R. Freed, “Methods For evaluating lithographic performance of exposure tools for the 45-nm node: ECD and scatterometry,” Proc. SPIE 5375, 494–502 (2004).

[CrossRef]

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

E. Barouch, and S. L. Knodle, “Scatterometry as a practical in-situ metrology technology,” Proc. SPIE 5038, 559–567 (2003).

[CrossRef]

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Toward a complete description of linewidth roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).

[CrossRef]

T. G. Makay, “Homogenization of linear and nonlinear complex composite materials,” in Introduction to Complex Mediums for Optics and Electromagnetics, W.S.Weiglhofer, A.Lakhtakia, eds., (SPIE, Bellingham, Washington, 2003), pp. 317–346.

[CrossRef]

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Proc. R. Soc. London, Ser. A 205, 237–288 (1906).

K. A. Michalski and T. A. Germer, available from the author at thomas.germer@nist.gov.

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

D. Ronnow, S. K. Anderson, and G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).

[CrossRef]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Med. Instrum. 86, 1029–1032 (2009).

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

V. Constantoudis, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Microlithogr., Microfabr., Microsyst. 3, 429–435 (2004).

[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Toward a complete description of linewidth roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).

[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. a comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).

[CrossRef]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists II: scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).

[CrossRef]

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Med. Instrum. 86, 1029–1032 (2009).

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Med. Instrum. 86, 1029–1032 (2009).

L. Rayleigh, “On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen,” Philos. Mag. 44, 28–52 (1897).

[CrossRef]

K. Huang, B. J. Rice, B. Coombs, and R. Freed, “Methods For evaluating lithographic performance of exposure tools for the 45-nm node: ECD and scatterometry,” Proc. SPIE 5375, 494–502 (2004).

[CrossRef]

D. Ronnow, S. K. Anderson, and G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).

[CrossRef]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Med. Instrum. 86, 1029–1032 (2009).

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).

[CrossRef]

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

H. G. Tompkins, A User’s Guide to Ellipsometry (Academic, 1993).

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. a comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).

[CrossRef]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists II: scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).

[CrossRef]

B. Yaakobovitz, Y. Cohen, and Y. Tsur, “Line edge roughness detection using deep UV light scatterometry,” Microelectron. Eng. 84, 619–625 (2007).

[CrossRef]

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980) pp. 705–708.

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

B. Yaakobovitz, Y. Cohen, and Y. Tsur, “Line edge roughness detection using deep UV light scatterometry,” Microelectron. Eng. 84, 619–625 (2007).

[CrossRef]

J. Bischoff, E. Drege, and S. Yedur, “Edge Roughness Measurement In Optical Metrology,” US Patent 7,046,375, 16 May 2006.

V. Constantoudis, G. P. Patsis, and E. Gogolides, “Photoresist line-edge roughness analysis using scaling concepts,” J. Microlithogr., Microfabr., Microsyst. 3, 429–435 (2004).

[CrossRef]

L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

L. F. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

T. A. Germer, “Effect of line and trench profile variation on specular and diffuse reflectance from a periodic structure,” J. Opt. Soc. Am. A 24, 696–701 (2007).

[CrossRef]

V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists II: scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B 21, 1019–1026 (2003).

[CrossRef]

G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. a comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21, 1008–1018 (2003).

[CrossRef]

J. Thiault, J. Foucher, J. H. Tortai, O. Joubert, S. Landis, and S. Pauliac, “Line edge roughness characterization with a three-dimensional atomic force microscope: transfer during gate patterning processes,” J. Vac. Sci. Technol. B 23, 3075–3079 (2005).

[CrossRef]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Med. Instrum. 86, 1029–1032 (2009).

B. Yaakobovitz, Y. Cohen, and Y. Tsur, “Line edge roughness detection using deep UV light scatterometry,” Microelectron. Eng. 84, 619–625 (2007).

[CrossRef]

D. Ronnow, S. K. Anderson, and G. A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mater. 4, 815–821 (1995).

[CrossRef]

L. Rayleigh, “On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture in a conducting screen,” Philos. Mag. 44, 28–52 (1897).

[CrossRef]

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).

[CrossRef]

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Proc. R. Soc. London, Ser. A 205, 237–288 (1906).

G. M. Gallatin, “Resist blur and line edge roughness,” Proc. SPIE 5754, 38–52 (2005).

[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Toward a complete description of linewidth roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).

[CrossRef]

V. Constantoudis, G. Kokkoris, P. Xydi, E. Gogolides, E. Pargon, and M. Martin, “Line edge roughness transfer during plasma etching: modeling approaches and comparison with experimental results,” Proc. SPIE 7273, 72732J (2009).

[CrossRef]

K. Huang, B. J. Rice, B. Coombs, and R. Freed, “Methods For evaluating lithographic performance of exposure tools for the 45-nm node: ECD and scatterometry,” Proc. SPIE 5375, 494–502 (2004).

[CrossRef]

E. Barouch, and S. L. Knodle, “Scatterometry as a practical in-situ metrology technology,” Proc. SPIE 5038, 559–567 (2003).

[CrossRef]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,”Proc. SPIE 5038, 264–273 (2003).

[CrossRef]

R. Silver, T. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007).

[CrossRef]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, and P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[CrossRef]

T. G. Makay, “Homogenization of linear and nonlinear complex composite materials,” in Introduction to Complex Mediums for Optics and Electromagnetics, W.S.Weiglhofer, A.Lakhtakia, eds., (SPIE, Bellingham, Washington, 2003), pp. 317–346.

[CrossRef]

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980) pp. 705–708.

J. Bischoff, E. Drege, and S. Yedur, “Edge Roughness Measurement In Optical Metrology,” US Patent 7,046,375, 16 May 2006.

K. A. Michalski and T. A. Germer, available from the author at thomas.germer@nist.gov.

T. A. Germer, “SCATMECH: Polarized Light Scattering C++ Class Library,” available online at http://physics.nist.gov/scatmech (2008).

H. G. Tompkins, A User’s Guide to Ellipsometry (Academic, 1993).