Abstract

We demonstrate an approach allowing isolating effects of surface plasmon polariton mediated resonant transmission in a periodic grating by means of polarization rotation. The grating comprises a square array of cylindrical holes in an optically thick metallic film. Transmittance data for the co- and cross-polarized cases are described accurately with Fano-type and pure Lorentzian-type line shapes, respectively. This polarization control allows for changing the relative weights of resonant and non-resonant transmission mechanisms, thus controlling the shape and symmetry of the observed Fano-type line shapes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Focus Issue: “Extraordinary Light Transmission Through Sub-Wavelength Structured Surfaces,” Opt. Express 12, 3618-3706 (2004).
    [Crossref] [PubMed]
  2. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4, 1275-1298 (1965).
    [Crossref]
  3. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood's anomalies in optical properties of thin metallic films with a bi-dimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [Crossref]
  4. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331-336 (2003).
    [Crossref]
  5. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31, 1528-1530 (2006).
    [Crossref] [PubMed]
  6. F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7-18 (2006).
    [Crossref] [PubMed]
  7. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150-3165 (2005).
    [Crossref] [PubMed]
  8. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
    [Crossref] [PubMed]
  9. S. J. Elston, G. P. Bryanbrown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393-6400 (1991).
    [Crossref]
  10. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Polarization analysis of propagating surface plasmons in a subwavelength hole array,” J. Opt. Soc. Am. B 20, 1927-1931 (2003).
    [Crossref]
  11. K. A. Tetz, R. Rokitski, M. Nezhad, and Y. Fainman, “Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating,” Appl. Phys. Lett. 86, 111110 (2005).
    [Crossref]
  12. E. Altewischer, X. Ma, M. P. van Exter, and J. P. Woerdman, “Fano-type interference in the point-spread function of nanohole arrays,” Opt. Lett. 30, 2436-2438 (2005).
    [Crossref] [PubMed]
  13. R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
    [Crossref] [PubMed]
  14. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
    [Crossref] [PubMed]
  15. M. Sarrazin and J. P. Vigneron, “Polarization effects in metallic films perforated with a bi-dimensional array of rectangular subwavelength holes,” Opt. Commun. 240, 89-97 (2004).
    [Crossref]
  16. Y. M. Strelniker, “Theory of optical transmission through elliptical nanohole arrays,” Phys. Rev. B 76, 085409 (2007).
    [Crossref]
  17. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
    [Crossref] [PubMed]
  18. R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
    [Crossref]
  19. V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970-984 (2006).
    [Crossref]
  20. R. E. Collin and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill, 1969).
  21. F. Falco, T. Tamir, and K. M. Leung, “Grating diffraction and Wood's anomalies at two-dimensionally periodic impedance surfaces,” J. Opt. Soc. Am. A 21, 1621-1634 (2004).
    [Crossref]
  22. D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6S10 (2005).
    [Crossref]
  23. S. Zhang and T. Tamir, “Spatial modifications of Gaussian beams diffracted by reflection gratings,” J. Opt. Soc. Am. A 6, 1368-1381 (1989).
    [Crossref]
  24. V. Lomakin and E. Michielssen, “Beam transmission through periodic sub-wavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564-1581 (2007).
    [Crossref]
  25. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).
    [Crossref]

2007 (2)

Y. M. Strelniker, “Theory of optical transmission through elliptical nanohole arrays,” Phys. Rev. B 76, 085409 (2007).
[Crossref]

V. Lomakin and E. Michielssen, “Beam transmission through periodic sub-wavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564-1581 (2007).
[Crossref]

2006 (3)

2005 (5)

S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150-3165 (2005).
[Crossref] [PubMed]

K. A. Tetz, R. Rokitski, M. Nezhad, and Y. Fainman, “Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating,” Appl. Phys. Lett. 86, 111110 (2005).
[Crossref]

E. Altewischer, X. Ma, M. P. van Exter, and J. P. Woerdman, “Fano-type interference in the point-spread function of nanohole arrays,” Opt. Lett. 30, 2436-2438 (2005).
[Crossref] [PubMed]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[Crossref] [PubMed]

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6S10 (2005).
[Crossref]

2004 (5)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

M. Sarrazin and J. P. Vigneron, “Polarization effects in metallic films perforated with a bi-dimensional array of rectangular subwavelength holes,” Opt. Commun. 240, 89-97 (2004).
[Crossref]

F. Falco, T. Tamir, and K. M. Leung, “Grating diffraction and Wood's anomalies at two-dimensionally periodic impedance surfaces,” J. Opt. Soc. Am. A 21, 1621-1634 (2004).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Focus Issue: “Extraordinary Light Transmission Through Sub-Wavelength Structured Surfaces,” Opt. Express 12, 3618-3706 (2004).
[Crossref] [PubMed]

2003 (5)

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood's anomalies in optical properties of thin metallic films with a bi-dimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331-336 (2003).
[Crossref]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[Crossref]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Polarization analysis of propagating surface plasmons in a subwavelength hole array,” J. Opt. Soc. Am. B 20, 1927-1931 (2003).
[Crossref]

1991 (1)

S. J. Elston, G. P. Bryanbrown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393-6400 (1991).
[Crossref]

1989 (1)

1965 (1)

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Altewischer, E.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Bryanbrown, G. P.

S. J. Elston, G. P. Bryanbrown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393-6400 (1991).
[Crossref]

Campillo, I.

Chang, S. H.

Collin, R. E.

R. E. Collin and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill, 1969).

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Dolado, J. S.

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Elston, S. J.

S. J. Elston, G. P. Bryanbrown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393-6400 (1991).
[Crossref]

Fainman, Y.

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31, 1528-1530 (2006).
[Crossref] [PubMed]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[Crossref] [PubMed]

K. A. Tetz, R. Rokitski, M. Nezhad, and Y. Fainman, “Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating,” Appl. Phys. Lett. 86, 111110 (2005).
[Crossref]

Falco, F.

Felsen, L. B.

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).
[Crossref]

García de Abajo, F. J.

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331-336 (2003).
[Crossref]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Gray, S. K.

Hessel, A.

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Jackson, D. R.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6S10 (2005).
[Crossref]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Leung, K. M.

Lienau, C.

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[Crossref]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Lomakin, V.

V. Lomakin and E. Michielssen, “Beam transmission through periodic sub-wavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564-1581 (2007).
[Crossref]

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970-984 (2006).
[Crossref]

Ma, X.

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[Crossref]

Marcuvitz, N.

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).
[Crossref]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Michielssen, E.

V. Lomakin and E. Michielssen, “Beam transmission through periodic sub-wavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564-1581 (2007).
[Crossref]

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970-984 (2006).
[Crossref]

Muller, R.

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Nezhad, M.

K. A. Tetz, R. Rokitski, M. Nezhad, and Y. Fainman, “Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating,” Appl. Phys. Lett. 86, 111110 (2005).
[Crossref]

Oliner, A. A.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6S10 (2005).
[Crossref]

A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4, 1275-1298 (1965).
[Crossref]

Pang, L.

Park, J. W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Rokitski, R.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[Crossref] [PubMed]

K. A. Tetz, R. Rokitski, M. Nezhad, and Y. Fainman, “Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating,” Appl. Phys. Lett. 86, 111110 (2005).
[Crossref]

Sáenz, J. J.

Sambles, J. R.

S. J. Elston, G. P. Bryanbrown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393-6400 (1991).
[Crossref]

Sarrazin, M.

M. Sarrazin and J. P. Vigneron, “Polarization effects in metallic films perforated with a bi-dimensional array of rectangular subwavelength holes,” Opt. Commun. 240, 89-97 (2004).
[Crossref]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood's anomalies in optical properties of thin metallic films with a bi-dimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Schatz, G. C.

Strelniker, Y. M.

Y. M. Strelniker, “Theory of optical transmission through elliptical nanohole arrays,” Phys. Rev. B 76, 085409 (2007).
[Crossref]

Tamir, T.

Tetz, K. A.

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31, 1528-1530 (2006).
[Crossref] [PubMed]

K. A. Tetz, R. Rokitski, M. Nezhad, and Y. Fainman, “Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating,” Appl. Phys. Lett. 86, 111110 (2005).
[Crossref]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[Crossref] [PubMed]

van Exter, M. P.

Vigneron, J. P.

M. Sarrazin and J. P. Vigneron, “Polarization effects in metallic films perforated with a bi-dimensional array of rectangular subwavelength holes,” Opt. Commun. 240, 89-97 (2004).
[Crossref]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood's anomalies in optical properties of thin metallic films with a bi-dimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Vigoureux, J. M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood's anomalies in optical properties of thin metallic films with a bi-dimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Williams, J. T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6S10 (2005).
[Crossref]

Woerdman, J. P.

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

Zhang, S.

Zhao, T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6S10 (2005).
[Crossref]

Zucker, F. J.

R. E. Collin and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill, 1969).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. A. Tetz, R. Rokitski, M. Nezhad, and Y. Fainman, “Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating,” Appl. Phys. Lett. 86, 111110 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (2)

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970-984 (2006).
[Crossref]

V. Lomakin and E. Michielssen, “Beam transmission through periodic sub-wavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564-1581 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

M. Sarrazin and J. P. Vigneron, “Polarization effects in metallic films perforated with a bi-dimensional array of rectangular subwavelength holes,” Opt. Commun. 240, 89-97 (2004).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331-336 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (4)

Y. M. Strelniker, “Theory of optical transmission through elliptical nanohole arrays,” Phys. Rev. B 76, 085409 (2007).
[Crossref]

R. Muller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B 68, 205415 (2003).
[Crossref]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood's anomalies in optical properties of thin metallic films with a bi-dimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

S. J. Elston, G. P. Bryanbrown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393-6400 (1991).
[Crossref]

Phys. Rev. Lett. (4)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref] [PubMed]

Radio Sci. (1)

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6S10 (2005).
[Crossref]

Other (2)

R. E. Collin and F. J. Zucker, Antenna Theory Part 2 (McGraw-Hill, 1969).

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry for excitation of SPP fields on metal films perforated by a 2-D nanohole grating. The inset shows the respective directions as defined in reciprocal lattice space.

Fig. 2
Fig. 2

(A) Unpolarized spectral measurements of unpolarized zero-order for cubic arrays of holes in a thin aluminum film on a GaAs substrate. Data from several arrays with different periods a have been combined for these composite intensity images, where the stitching frequencies appear as horizontal white lines. The transmittance has been normalized by the hole area per unit cell. (B) Calculated SPP phase matching conditions for the same parameter space. For comparison, the region corresponding to the high resolution measurements of the gold sample discussed in Section 2 is also shown [small box in (A) and (B)].

Fig. 3
Fig. 3

Measured transmission as a function of frequency (radial direction) and analyzer (azimuth angle). Data in (B) are the same as (A); however, it has been normalized along each ψ A to the maximum of each scan in the radial direction (normalized frequency, a / λ ) for viewing the salient properties of the transmission.

Fig. 4
Fig. 4

Measured and calculated normalized transmissions as functions of wave vector and ψ A at fixed frequency for two input polarization states: (A) and (C) are ψ P = 0 , whereas (B) and (D) are with ψ P = π / 4 . Data have been normalized along the radial direction ( a k / 2 π ) in the fashion described in Fig. 3. (A) and (B) are the measured data, and (C) and (D) are the calculated values as a fit using the model described in the text.  

Fig. 5
Fig. 5

Transmission data for various polarization states demonstrating various Fano type line shapes. Data have been normalized along the radial direction ( a k / 2 π ) and offset vertically for clarity. Dotted lines merely serve as guides to eye. ψ A 2 = 3 π / 4 , and ψ A 3 ( ψ A 1 ) is + π / 9 ( π / 9 ) from this value.

Tables (1)

Tables Icon

Table 1 Fitting Parameters for Normalized Frequency and Normalized Angular Interrogation of Polarization Dependent Transmission

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

k spp = k ± n K x G ± m K y G ,
k = k x + k y = k 0 [ x ̂   sin   θ   cos   ϕ + y ̂   sin   θ   sin   ϕ ] .
| k 1 2 , 2 3 spp | k 0 ε 1 , 3 ε 2 ε 1 , 3 + ε 2 ,
t ( ζ ) = t b ( ζ ) + n , m c n m ζ ζ n m ,
t ( ζ ) = t b ( ζ ) + c n ζ ζ n .
| t ( ζ ) | 2 = ( ζ ζ z R ) 2 + ( ζ z I ) 2 ( ζ ζ n R ) 2 + ( ζ n I ) 2 | t b 0 | 2 ,
ν = c n t b 0 .
E out = R 1 ( ψ A ) A R ( ψ A ) M s E in ( ψ P ) ,
M b s = t b 0 ( 1 0 0 1 ) ,     M res s = ( c n 0 0 0 ) ,
E b ( z = 0 + ) = t b 0 E 0 ( x ̂   cos   ψ P + y ̂   sin   ψ P ) ,
E res ( z = 0 + ) = x ̂ c n E 0   cos   ψ P ,
ν ( ψ P , ψ A ) = e ̂ A E res e ̂ A E b = c n t b 0 1 ( 1 + tan   ψ P   tan   ψ A ) .

Metrics