Abstract

Mie scattering functions for a magnetizable sphere whose relative refractive index is dependent on the externally applied magnetic field are computed for four different sizes of the sphere. It is found that Mie resonances are observed at certain critical fields when the incident light is polarized with its electric vector perpendicular to the applied field. The width of resonance as well as the critical fields shifts with the increase in size of the spheres. Results are compared with the experimentally observed scattering effects in a dispersion of magnetite spheres in a ferrofluid.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kreg, “Ludvig Lorenz and nineteenth century optical theory: the work of a great Danish scientist,” Appl. Opt. 30, 4686-4695 (1991).
  2. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann Phys. (Leipzig) 25, 376-445 (1908).
  3. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1980).
  4. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  6. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  7. K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2001).
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  10. J. Annopoulos, R. D. Meade, and N. J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  11. M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
    [CrossRef] [PubMed]
  12. A. E. Miroschnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
    [CrossRef]
  13. R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
    [CrossRef] [PubMed]
  14. R. V. Mehta, R. J. Patel, and R. V. Upadhyay, “Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light,” Phys. Rev. B 74, 195127 (2006).
    [CrossRef]
  15. R. Lenke, R. Lehner, and G. Maret, “Magnetic-field effects on coherent backscattering of light in case of Mie spheres,” EPL 52, 620-626 (2000).
    [CrossRef]
  16. D. Lacoste and B. A. van Tigglen, “Coherent backscattering of light in a magnetic field,” Phys. Rev. E 61, 4556-4565 (2000).
    [CrossRef]
  17. A. S. Martinez and R. Maynard, “Faraday effect and multiple scattering of light,” Phys. Rev. B 50, 3714-3732 (1994).
    [CrossRef]
  18. M. Kerker, D. S. Wang, and G. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765-767 (1983).
    [CrossRef]
  19. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
    [CrossRef] [PubMed]
  20. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000).
    [CrossRef]
  21. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001).
    [CrossRef]
  22. R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004).
    [CrossRef]
  23. D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, and A. Sparenberg, “Optics of a Faraday-active Mie sphere,” J. Opt. Soc. Am. A 15, 1636-1642 (1998).
    [CrossRef]
  24. B. García-Cámara, F. Moreno, F. Gonzalez, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25, 327-334 (2008).
    [CrossRef]
  25. B. Garcia-Camara, F. Gonzalez, F. Moreno, and J. M. Saiz, “Exception for the zero-forwardscattering theory,” J. Opt. Soc. Am. A 25, 2875-2878 (2008).
    [CrossRef]
  26. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, 1992).
    [CrossRef]
  27. H. M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499-501 (1984).
    [CrossRef] [PubMed]
  28. H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008).
    [CrossRef]
  29. T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
    [CrossRef]
  30. Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
    [CrossRef]
  31. R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.
  32. S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
    [CrossRef]
  33. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).
  34. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505-1509 (1980).
    [CrossRef] [PubMed]
  35. R. Patel, “Induced optical anisotropy by nanomagnetic particles in nanofluids,” J. Opt. A, Pure Appl. Opt. 11, 125004 (2009).
    [CrossRef]

2009 (2)

A. E. Miroschnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[CrossRef]

R. Patel, “Induced optical anisotropy by nanomagnetic particles in nanofluids,” J. Opt. A, Pure Appl. Opt. 11, 125004 (2009).
[CrossRef]

2008 (5)

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

B. García-Cámara, F. Moreno, F. Gonzalez, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25, 327-334 (2008).
[CrossRef]

B. Garcia-Camara, F. Gonzalez, F. Moreno, and J. M. Saiz, “Exception for the zero-forwardscattering theory,” J. Opt. Soc. Am. A 25, 2875-2878 (2008).
[CrossRef]

M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008).
[CrossRef]

2006 (3)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Mehta, R. J. Patel, and R. V. Upadhyay, “Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light,” Phys. Rev. B 74, 195127 (2006).
[CrossRef]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

2004 (1)

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004).
[CrossRef]

2003 (1)

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

2001 (1)

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001).
[CrossRef]

2000 (4)

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef] [PubMed]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000).
[CrossRef]

R. Lenke, R. Lehner, and G. Maret, “Magnetic-field effects on coherent backscattering of light in case of Mie spheres,” EPL 52, 620-626 (2000).
[CrossRef]

D. Lacoste and B. A. van Tigglen, “Coherent backscattering of light in a magnetic field,” Phys. Rev. E 61, 4556-4565 (2000).
[CrossRef]

1998 (2)

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, and A. Sparenberg, “Optics of a Faraday-active Mie sphere,” J. Opt. Soc. Am. A 15, 1636-1642 (1998).
[CrossRef]

1994 (1)

A. S. Martinez and R. Maynard, “Faraday effect and multiple scattering of light,” Phys. Rev. B 50, 3714-3732 (1994).
[CrossRef]

1991 (1)

H. Kreg, “Ludvig Lorenz and nineteenth century optical theory: the work of a great Danish scientist,” Appl. Opt. 30, 4686-4695 (1991).

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1984 (1)

1983 (1)

1980 (1)

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann Phys. (Leipzig) 25, 376-445 (1908).

Annopoulos, J.

J. Annopoulos, R. D. Meade, and N. J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Bennemann, K. H.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Berger, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Bhatnagar, S. P.

R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Chang, R. K.

Chen, Y. F.

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

Chudasama, B.

R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.

Chui, S. T.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Desai, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Dolling, G.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Du, J.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Flach, S.

M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Garcia-Camara, B.

García-Cámara, B.

Giles, G. L.

Gonzalez, F.

Gorbach, A. V.

M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Hong, C.

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

Horng, H. E.

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ikari, H.

H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008).
[CrossRef]

Ishidate, T.

H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Joyes, P.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Kamada, K.

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Karatsu, T.

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Kerker, M.

Kitamura, A.

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Kreg, H.

H. Kreg, “Ludvig Lorenz and nineteenth century optical theory: the work of a great Danish scientist,” Appl. Opt. 30, 4686-4695 (1991).

Krivshar, Y. S.

M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Lacoste, D.

D. Lacoste and B. A. van Tigglen, “Coherent backscattering of light in a magnetic field,” Phys. Rev. E 61, 4556-4565 (2000).
[CrossRef]

D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, and A. Sparenberg, “Optics of a Faraday-active Mie sphere,” J. Opt. Soc. Am. A 15, 1636-1642 (1998).
[CrossRef]

Lehner, R.

R. Lenke, R. Lehner, and G. Maret, “Magnetic-field effects on coherent backscattering of light in case of Mie spheres,” EPL 52, 620-626 (2000).
[CrossRef]

Lenke, R.

R. Lenke, R. Lehner, and G. Maret, “Magnetic-field effects on coherent backscattering of light in case of Mie spheres,” EPL 52, 620-626 (2000).
[CrossRef]

Lin, Z.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Linden, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Liu, S.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Long, M. B.

Maret, G.

R. Lenke, R. Lehner, and G. Maret, “Magnetic-field effects on coherent backscattering of light in case of Mie spheres,” EPL 52, 620-626 (2000).
[CrossRef]

Martinez, A. S.

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001).
[CrossRef]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000).
[CrossRef]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef] [PubMed]

A. S. Martinez and R. Maynard, “Faraday effect and multiple scattering of light,” Phys. Rev. B 50, 3714-3732 (1994).
[CrossRef]

Matsuo, S.

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Maynard, R.

A. S. Martinez and R. Maynard, “Faraday effect and multiple scattering of light,” Phys. Rev. B 50, 3714-3732 (1994).
[CrossRef]

Meade, R. D.

J. Annopoulos, R. D. Meade, and N. J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Mehta, R. V.

R. V. Mehta, R. J. Patel, and R. V. Upadhyay, “Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light,” Phys. Rev. B 74, 195127 (2006).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann Phys. (Leipzig) 25, 376-445 (1908).

Miroschnichenko, A. E.

A. E. Miroschnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[CrossRef]

M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Misawa, H.

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Moreno, F.

Nussenzveig, H. M.

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, 1992).
[CrossRef]

Ohta, K.

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Okanshi, K.

H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008).
[CrossRef]

Parekh, K.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Patel, R.

R. Patel, “Induced optical anisotropy by nanomagnetic particles in nanofluids,” J. Opt. A, Pure Appl. Opt. 11, 125004 (2009).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Patel, R. J.

R. V. Mehta, R. J. Patel, and R. V. Upadhyay, “Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light,” Phys. Rev. B 74, 195127 (2006).
[CrossRef]

R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.

Pinheiro, F. A.

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001).
[CrossRef]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000).
[CrossRef]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef] [PubMed]

Rikken, G. L. J. A.

Saiz, J. M.

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2001).

Sampaio, L. C.

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001).
[CrossRef]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000).
[CrossRef]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef] [PubMed]

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Soukoulis, C. M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Sparenberg, A.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Takahashi, T.

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Tarento, R. J.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Tomita, M.

H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008).
[CrossRef]

Tribelsky, M. I.

M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

Tse, W. S.

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

Tzeng, H. M.

Upadhyay, R. V.

R. V. Mehta, R. J. Patel, and R. V. Upadhyay, “Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light,” Phys. Rev. B 74, 195127 (2006).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1980).

Van de Walle, J.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004).
[CrossRef]

van Tiggelen, B. A.

van Tigglen, B. A.

D. Lacoste and B. A. van Tigglen, “Coherent backscattering of light in a magnetic field,” Phys. Rev. E 61, 4556-4565 (2000).
[CrossRef]

Videen, G.

Wall, K. F.

Wang, D. S.

Wegner, M.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Winn, N. J.

J. Annopoulos, R. D. Meade, and N. J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Wiscombe, W. J.

Wu, R. X.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yang, H. C.

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

Yang, S. Y.

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

Zhou, J.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

Ann Phys. (Leipzig) (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann Phys. (Leipzig) 25, 376-445 (1908).

Appl. Opt. (2)

H. Kreg, “Ludvig Lorenz and nineteenth century optical theory: the work of a great Danish scientist,” Appl. Opt. 30, 4686-4695 (1991).

W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505-1509 (1980).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C. Hong, and H. C. Yang, “Thermal effect on the field-dependent refractive index of the magnetic fluid film,” Appl. Phys. Lett. 82, 3481-3484 (2003).
[CrossRef]

Braz. J. Phys. (1)

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Multiple scattering of electromagnetic waves in disordered magnetic media: localization parameter, energy transport velocity and diffusion constant,” Braz. J. Phys. 31, 65-70 (2001).
[CrossRef]

EPL (1)

R. Lenke, R. Lehner, and G. Maret, “Magnetic-field effects on coherent backscattering of light in case of Mie spheres,” EPL 52, 620-626 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Berger, F. Schmidt, and M. Wegner, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 999, 2-8 (2006).

J. Opt. A, Pure Appl. Opt. (1)

R. Patel, “Induced optical anisotropy by nanomagnetic particles in nanofluids,” J. Opt. A, Pure Appl. Opt. 11, 125004 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Lett. (1)

Opt. Mater. (1)

H. Ikari, K. Okanshi, M. Tomita, and T. Ishidate, “Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres,” Opt. Mater. 30, 1323-1326 (2008).
[CrossRef]

Phys. Rev. A (1)

A. E. Miroschnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009).
[CrossRef]

Phys. Rev. B (3)

A. S. Martinez and R. Maynard, “Faraday effect and multiple scattering of light,” Phys. Rev. B 50, 3714-3732 (1994).
[CrossRef]

R. V. Mehta, R. J. Patel, and R. V. Upadhyay, “Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light,” Phys. Rev. B 74, 195127 (2006).
[CrossRef]

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Phys. Rev. E (2)

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, “Mie scattering of magnetic spheres,” Phys. Rev. E 69, 026606 (2004).
[CrossRef]

D. Lacoste and B. A. van Tigglen, “Coherent backscattering of light in a magnetic field,” Phys. Rev. E 61, 4556-4565 (2000).
[CrossRef]

Phys. Rev. Lett. (6)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “New effects in light scattering in disordered media and coherent backscattering cone: systems of magnetic particles,” Phys. Rev. Lett. 84, 1435-1438 (2000).
[CrossRef] [PubMed]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, “Vanishing of energy transport velocity and diffusion constant of electromagnetic waves in disordered magnetic media,” Phys. Rev. Lett. 85, 5563-5566 (2000).
[CrossRef]

M. I. Tribelsky, S. Flach, A. E. Miroschnichenko, A. V. Gorbach, and Y. S. Krivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett. 100, 043903 (2008).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Thin Solid Films (1)

T. Takahashi, S. Matsuo, H. Misawa, T. Karatsu, A. Kitamura, K. Kamada, and K. Ohta, “Morphology dependent resonant lasing of a dye-doped microsphere prepared by non-linear optical material,” Thin Solid Films 331, 298-302 (1998).
[CrossRef]

Other (8)

R. V. Mehta, R. J. Patel, B. Chudasama, R. V. Upadhyay, and S. P. Bhatnagar, “Field induced photonic bandgap in ferrodispersion” in IEE-Photonics Global 2008 Proceeding (2008), Vol. A, pp. A136-A138.

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, 1992).
[CrossRef]

J. Annopoulos, R. D. Meade, and N. J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1980).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Variation of intensity functions i 1 , 2 as a function of dimensionless parameter ξ for a MMS having a diameter of 0.5 μ m .

Fig. 2
Fig. 2

Variation of i 1 , 2 with ξ for a MMS having a diameter of 1.5 μ m .

Fig. 3
Fig. 3

Intensity functions i 1 , 2 for 3 μ m diameter MMS. Only i 1 reduces to zero when ξ is between 2.22 and 2.6.

Fig. 4
Fig. 4

Field dependent variation of i 1 , 2 for 5 μ m diameter MMS.

Fig. 5
Fig. 5

Variation of i 1 with ξ for θ = 170 ° when the size parameter α = 15 . This corresponds to a MMS diameter of 3 μ m for λ = 0632 μ m .

Fig. 6
Fig. 6

Variation of intensity function i 1 with the field parameter ξ for wavelengths of 0.632 and 0.532 μ m , respectively, when the particle diameter is 3 μ m , that is, α = 15 and 18, respectively.

Fig. 7
Fig. 7

Variation of refractive index of the ferrofluid with ξ for red light. The line is generated using expression (5). Inset shows the variation of refractive index ξ for green wavelength. The filled and open symbols are for field directions parallel and perpendicular to the incident light.

Fig. 8
Fig. 8

CCD images of the transmitted light at different magnetic fields when the sample is exposed to red and green lights simultaneously. At the field H = H CRG both red and green lights disappear.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i 1 = | S 1 ( m s , α , θ ) | 2 ,     i 2 = | S 2 ( m s , α , θ ) | 2 ,
S 1 ( m s , α , θ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n π n ( cos   θ ) + b n τ n ( cos   θ ) ] ,
S 2 ( m s , α , θ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n τ n ( cos   θ ) + b n π n ( cos   θ ) ] ,
a n = μ ψ n ( β ) ψ n ( α ) m ψ n ( β ) ψ n ( α ) μ ψ n ( β ) ζ n ( α ) m ψ n ( β ) ζ n ( α ) ,
b n = m ψ n ( β ) ψ n ( α ) μ ψ n ( β ) ψ n ( α ) m ψ n ( β ) ζ n ( α ) μ ψ n ( β ) ζ n ( α ) .
m f = m L ( ξ ) + m 0 ,
L ( ξ ) = coth ( ξ ) 1 ξ ,

Metrics