Abstract

Structural similarity metrics and information-theory-based metrics have been proposed as completely different alternatives to the traditional metrics based on error visibility and human vision models. Three basic criticisms were raised against the traditional error visibility approach: (1) it is based on near-threshold performance, (2) its geometric meaning may be limited, and (3) stationary pooling strategies may not be statistically justified. These criticisms and the good performance of structural and information-theory-based metrics have popularized the idea of their superiority over the error visibility approach. In this work we experimentally or analytically show that the above criticisms do not apply to error visibility metrics that use a general enough divisive normalization masking model. Therefore, the traditional divisive normalization metric [1] is not intrinsically inferior to the newer approaches. In fact, experiments on a number of databases including a wide range of distortions show that divisive normalization is fairly competitive with the newer approaches, robust, and easy to interpret in linear terms. These results suggest that, despite the criticisms of the traditional error visibility approach, divisive normalization masking models should be considered in the image quality discussion.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription