Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film

Not Accessible

Your library or personal account may give you access

Abstract

Theoretical modeling of a surface plasmon resonance (SPR) based fiber optic sensor with a conducting metal oxide [indium tin oxide (ITO)] as the SPR active material is proposed. The theoretical analysis reveals that the proposed sensing probe can be utilized for sensing in the IR region, where most of the gases show their absorption regime. Comparison of sensitivity predicts that an ITO-layer-coated SPR-based fiber optic sensor is about 60% more sensitive than a gold-coated fiber optic sensor. The physical reasons behind sensitivity enhancement are provided. Apart from this, various advantageous features of the ITO over the noble metals, silver and gold, are addressed.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement

Priya Bhatia and Banshi D. Gupta
Appl. Opt. 50(14) 2032-2036 (2011)

Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor

Lixia Li, Yuzhang Liang, Jianye Guang, Wenli Cui, Xinpu Zhang, Jean-Francois Masson, and Wei Peng
Opt. Express 25(22) 26950-26957 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.