Abstract

This work presents a novel finite-element solution to the problem of scattering from multiple two-dimensional holes with side grating in infinite metallic walls. The formulation is based on using the surface integral equation with free-space Green’s function as the boundary constraint. The solution region is divided into interior regions containing each hole or cavity as a side grating and exterior region. The finite-element formulation is applied inside the interior regions to derive a linear system of equations associated with nodal field values. The surface integral equation is then applied at the opening of the holes as a boundary constraint to connect nodes on the boundaries to interior nodes. The technique presented here is highly efficient in terms of computing resources, versatile and accurate in comparison with previously published methods. The near and far fields are generated for different single and multiple hole examples.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Semianalytic solution to the problem of scattering from multiple cylinders above a perfectly conductive surface

Babak Alavikia and Omar M. Ramahi
J. Opt. Soc. Am. A 28(7) 1489-1495 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (78)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription