Abstract

The relative involvement of different temporal frequency-selective filters underlying detection of chromatic stimuli was studied. Diverse spectral stimuli were used, namely flashed blue and yellow light spots, wide bars, and narrow bars. The stimuli were temporally modulated in luminance having constant wavelength. Although the bar-like stimuli apparently reduced the sensitivity at short and long wavelengths, the cone-opponent mechanism still remained responsible for the actual stimulus detection at different temporal frequencies. The bar-like stimuli increased sensitivity for temporal frequencies around 36Hz, revealing involvement of an intermediate temporal frequency-selective filter in detection, the so-called transient-1 filter. A probability summation model for the method of adjustment was developed that assumes that detection depends on the properties of the temporal filters underlying the temporal frequency-sensitivity curve. The model supports the notion that at least two temporal frequency-selective filters are necessary to account for the shape of the sensitivity curves obtained for blue bar-like stimuli.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. King-Smith and J. J. Kulikowski, “Pattern and flicker detection analysed by subthreshold summation,” J. Physiol. (London) 249, 519-548 (1975).
  2. M. B. Mandler and W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881-1887 (1984).
    [CrossRef] [PubMed]
  3. S. J. Anderson and D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147-1154 (1985).
    [CrossRef] [PubMed]
  4. R. F. Hess and G. T. Plant, “Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493-1500 (1985).
    [CrossRef] [PubMed]
  5. R. F. Hess and R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47-59 (1992).
    [CrossRef] [PubMed]
  6. J. J. Kulikowski and D. J. Tolhurst, “Psychophysical evidence for sustained and transient detectors in human vision,” J. Physiol. (London) 232, 149-162 (1973).
  7. J. J. Kulikowski, “Some stimulus parameters affecting spatial and temporal resolution of human vision,” Vision Res. 11, 83-93 (1971).
    [CrossRef] [PubMed]
  8. D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371-372 (1975).
    [CrossRef] [PubMed]
  9. A. B. Metha and K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red-green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969-1980 (1996).
    [CrossRef]
  10. A. B. Metha and K. T. Mullen, “Red-green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception,” J. Opt. Soc. Am. A 14, 984-996 (1997).
    [CrossRef]
  11. C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).
  12. C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).
  13. Sharanjeet-Kaur, J. J. Kulikowski, and V. Walsh, “The detection and discrimination of categorical yellow,” Ophthalmic Physiol. Opt. 17, 32-37 (1997).
    [CrossRef] [PubMed]
  14. M. Marré, “The investigation of acquired colour vision deficiencies,” in Colour (Adam Hilger, 1973), pp. 99-135.
  15. A. Nacer, I. J. Murray, and J. J. Kulikowski, “Balancing sensitivity of human chromatic opponent mechanisms by adaptation,” J. Physiol. (London) P21, 485P (1995).
  16. K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733-742 (1990).
    [CrossRef] [PubMed]
  17. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669-682 (1966).
    [CrossRef] [PubMed]
  18. F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).
  19. A. Nacer, “The interaction between chromatic and achromatic mechanisms of human colour vision: Limitations of sensitivity,” Ph.D. thesis (Department of Optometry and Vision Sciences, UMIST, Manchester, UK, 1990).
  20. P. E. King-Smith and D. Carden, “Luminance and opponent-colour contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709-717 (1976).
    [CrossRef] [PubMed]
  21. A. B. Watson, “Probability summation over time,” Vision Res. 19, 515-522 (1979).
    [CrossRef] [PubMed]
  22. J. J. Koenderink, “Scale-Time,” Biol. Cybern. 58, 159-162 (1988).
    [CrossRef]
  23. M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proc. IEEE 93, 216-231 (2005). URL http://www.fftw.org/.
    [CrossRef]
  24. J. Meza, R. Oliva, P. Hough, and P. Williams, “OPT++: An Object Oriented Toolkit for Nonlinear Optimization,” ACM Trans. Math. Softw. 33(2), Article No. 12 (2007). URL http://doi. acm.org/10.1145/1236463.1236467.
  25. H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180-184 (1971).
    [CrossRef] [PubMed]
  26. D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?,” Vision Res. 23, 787-797 (1983).
    [CrossRef] [PubMed]
  27. Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49-56 (1998).
    [CrossRef] [PubMed]
  28. H. D. Lange Dzn, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light,” J. Opt. Soc. Am. 48, 777-784 (1958).
    [CrossRef]
  29. W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics: An Introduction (Springer Verlag, 2001).
  30. P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1973).
  31. J. Bacon and P. E. King-Smith, “The detection of line segments,” Perception 6, 125-131 (1977).
    [CrossRef] [PubMed]
  32. C. R. Ingling Jr. and B. A. Drum, “How neural adaptation changes chromaticity coordinates,” J. Opt. Soc. Am. 63(3), 369-373 (1973).
    [CrossRef] [PubMed]
  33. C. R. Ingling Jr., E. Martinez, and A. L. Lewis, “Tonic-phasic-channel dichotomy and Crozier's law,” J. Opt. Soc. Am. 73, 183-189 (1983).
    [CrossRef] [PubMed]
  34. J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vision Res. 17, 653-656 (1977).
    [CrossRef] [PubMed]
  35. J. E. Thornton and E. N. Pugh, Jr., “Red/green colour opponency at detection threshold,” Science 219, 191-193 (1983).
    [CrossRef] [PubMed]
  36. R. S. Snelgar, D. H. Foster, and M. O. Scase, “Isolation of opponent-colour mechanisms at increment threshold,” Vision Res. 27, 1017-1027 (1987).
    [CrossRef] [PubMed]
  37. D. J. Calkins, J. E. Thornton, and E. N. Pugh, Jr., “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349-2367 (1992).
    [CrossRef] [PubMed]
  38. R. C. Baraas, J. J. Kulikowski, and A. R. Robson, “Spatial edges reduce colour selectivity,” Perception 27S, 168-169 (1998).
  39. D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357-1375 (1981).
    [CrossRef] [PubMed]
  40. D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341-1356 (1981).
    [CrossRef] [PubMed]
  41. A. Nacer, I. J. Murray, Sharanjeet-Kaur, and J. J. Kulikowski, “Selectivity limits of spectral sensitivity functions for chromatic and achromatic mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 83-91.
  42. J. J. Wisowaty and R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895-909 (1980).
    [CrossRef] [PubMed]
  43. A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189-208 (1991).
    [CrossRef] [PubMed]
  44. D. C. Burr and J. Ross, “Contrast sensitivity at high velocities,” Vision Res. 22, 479-484 (1982).
    [CrossRef] [PubMed]
  45. D. J. McKeefry and J. J. Kulikowski, “Spatial and temporal sensitivities of colour discrimination mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 163-172.
  46. D. M. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vision Res. 41, 245-255 (2001).
    [CrossRef] [PubMed]
  47. A. G. Shapiro, L. A. Baldwin, and J. D. Mollon, “The S and L-M chromatic systems have matched temporal processing characteristics only at low-light levels,” Perception 31, S68b (2002).
  48. J. G. Robson, “Spatial and temporal contrast sensitivity of the human eye,” J. Opt. Soc. Am. 56, 1141-1150 (1966).
    [CrossRef]
  49. P. Cavanagh, D. I. A. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428-1438 (1987).
    [CrossRef] [PubMed]
  50. R. F. Hess, K. T. Mullen, and E. Zrenner, “Human photopic vision with only short wavelength cones: post-receptoral properties,” J. Physiol. (London) 417, 151-172 (1989).
  51. M. H. A. Russell, J. J. Kulikowski, and I. J. Murray, “Spatial frequency dependence of the human visual evoked potential,” in Evoked Potentials III (Butterworth, 1987), pp. 231-239.
  52. P. R. Martin, “Colour processing in the primate retina: recent progress,” J. Physiol. (London) 513, 631-638 (1998).
    [CrossRef]
  53. D. M. Dacey and B. B. Lee, “The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature (London) 367, 731-735 (1994).
    [CrossRef]
  54. P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
    [CrossRef] [PubMed]
  55. D. J. Calkins, “Representation of cone signals in the primate retina,” J. Opt. Soc. Am. A 17, 597-606 (2000).
    [CrossRef]
  56. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carying S-cone signals in Macaque,” J. Neurosci. 28, 4078-4087 (2008).
    [CrossRef] [PubMed]
  57. M. S. Livingstone and D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309-356 (1984).
    [PubMed]
  58. D. Y. Ts'o and C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712-1728 (1988).
    [PubMed]
  59. T. Yeh, B. B. Lee, and J. Kremers, “Temporal response of ganglion cells of the macaque retina to cone-specific modulation,” J. Opt. Soc. Am. A 12, 456-464 (1995).
    [CrossRef]
  60. J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009).
    [CrossRef]
  61. B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433-1442 (1989).
    [PubMed]
  62. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223-2236 (1990).
    [CrossRef] [PubMed]
  63. P. Lennie, J. Pokorny, and V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283-1293 (1993).
    [CrossRef] [PubMed]
  64. W. H. Merigan and J. H. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347-352 (1990).
    [CrossRef]
  65. P. Gouras and E. Zrenner, “Enchancement of luminance flicker by color-opponent mechanisms,” Science 205, 587-589 (1979).
    [CrossRef] [PubMed]
  66. E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiol. (London) 330, 125-143 (1982).
  67. T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. (London) 337, 183-200 (1983).
  68. T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002).
    [CrossRef] [PubMed]
  69. T. Yoshioka and B. M. Dow, “Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 71-88 (1996).
    [CrossRef] [PubMed]
  70. T. Yoshioka, B. M. Dow, and R. G. Vautin, “Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 51-70 (1996).
    [CrossRef] [PubMed]
  71. J. J. Kulikowski and V. Walsh, “Colour vision: isolating mechanisms in overlapping streams,” Prog. Brain Res. 95, 417-426 (1993).
    [CrossRef] [PubMed]
  72. C. R. Michael, “Color-sensitive complex cells in monkey striate cortex,” J. Neurophysiol. 41, 1250-1266 (1978).
    [PubMed]
  73. C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233-1249 (1978).
    [PubMed]
  74. R. G. Vautin and B. M. Dow, “Color cell groups in foveal striate cortex of the behaving macaque,” J. Neurophysiol. 54, 273-292 (1985).
    [PubMed]
  75. R. L. De Valois and K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. 5 (Academic, 1975), pp. 117-166.
  76. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
    [CrossRef] [PubMed]
  77. P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649-669 (1990).
    [PubMed]
  78. E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409-416 (2001).
    [CrossRef] [PubMed]
  79. J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995).
    [PubMed]
  80. T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998).
    [CrossRef]
  81. J. J. Kulikowski and V. Walsh, “Demonstration of binocular fusion of color and texture,” in Early Vision and Beyond, T.Papathomas, ed. (MIT Press, 1995), pp. 27-32.
  82. J. J. Kulikowski, “Spatial and temporal properties of chromatic processing: Separation of colour from chromatic pattern mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd., 1997), pp.133-146.
  83. K. Kranda and P. E. King-Smith, “What can colour thresholds tell us about the nature of the underlying detection mechanisms,” Ophthalmic Physiol. Opt. 4, 83-87 (1984).
    [PubMed]
  84. C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
    [CrossRef]

2009 (1)

J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009).
[CrossRef]

2008 (1)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carying S-cone signals in Macaque,” J. Neurosci. 28, 4078-4087 (2008).
[CrossRef] [PubMed]

2005 (1)

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proc. IEEE 93, 216-231 (2005). URL http://www.fftw.org/.
[CrossRef]

2003 (1)

C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
[CrossRef]

2002 (2)

A. G. Shapiro, L. A. Baldwin, and J. D. Mollon, “The S and L-M chromatic systems have matched temporal processing characteristics only at low-light levels,” Perception 31, S68b (2002).

T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002).
[CrossRef] [PubMed]

2001 (2)

E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409-416 (2001).
[CrossRef] [PubMed]

D. M. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

2000 (1)

1998 (4)

P. R. Martin, “Colour processing in the primate retina: recent progress,” J. Physiol. (London) 513, 631-638 (1998).
[CrossRef]

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49-56 (1998).
[CrossRef] [PubMed]

R. C. Baraas, J. J. Kulikowski, and A. R. Robson, “Spatial edges reduce colour selectivity,” Perception 27S, 168-169 (1998).

T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998).
[CrossRef]

1997 (4)

C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).

Sharanjeet-Kaur, J. J. Kulikowski, and V. Walsh, “The detection and discrimination of categorical yellow,” Ophthalmic Physiol. Opt. 17, 32-37 (1997).
[CrossRef] [PubMed]

A. B. Metha and K. T. Mullen, “Red-green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception,” J. Opt. Soc. Am. A 14, 984-996 (1997).
[CrossRef]

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
[CrossRef] [PubMed]

1996 (3)

T. Yoshioka and B. M. Dow, “Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 71-88 (1996).
[CrossRef] [PubMed]

T. Yoshioka, B. M. Dow, and R. G. Vautin, “Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 51-70 (1996).
[CrossRef] [PubMed]

A. B. Metha and K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red-green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969-1980 (1996).
[CrossRef]

1995 (4)

C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).

A. Nacer, I. J. Murray, and J. J. Kulikowski, “Balancing sensitivity of human chromatic opponent mechanisms by adaptation,” J. Physiol. (London) P21, 485P (1995).

J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995).
[PubMed]

T. Yeh, B. B. Lee, and J. Kremers, “Temporal response of ganglion cells of the macaque retina to cone-specific modulation,” J. Opt. Soc. Am. A 12, 456-464 (1995).
[CrossRef]

1994 (1)

D. M. Dacey and B. B. Lee, “The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature (London) 367, 731-735 (1994).
[CrossRef]

1993 (3)

P. Lennie, J. Pokorny, and V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283-1293 (1993).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

J. J. Kulikowski and V. Walsh, “Colour vision: isolating mechanisms in overlapping streams,” Prog. Brain Res. 95, 417-426 (1993).
[CrossRef] [PubMed]

1992 (2)

D. J. Calkins, J. E. Thornton, and E. N. Pugh, Jr., “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349-2367 (1992).
[CrossRef] [PubMed]

R. F. Hess and R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47-59 (1992).
[CrossRef] [PubMed]

1991 (1)

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189-208 (1991).
[CrossRef] [PubMed]

1990 (4)

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649-669 (1990).
[PubMed]

W. H. Merigan and J. H. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347-352 (1990).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223-2236 (1990).
[CrossRef] [PubMed]

K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733-742 (1990).
[CrossRef] [PubMed]

1989 (2)

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433-1442 (1989).
[PubMed]

R. F. Hess, K. T. Mullen, and E. Zrenner, “Human photopic vision with only short wavelength cones: post-receptoral properties,” J. Physiol. (London) 417, 151-172 (1989).

1988 (2)

D. Y. Ts'o and C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712-1728 (1988).
[PubMed]

J. J. Koenderink, “Scale-Time,” Biol. Cybern. 58, 159-162 (1988).
[CrossRef]

1987 (2)

R. S. Snelgar, D. H. Foster, and M. O. Scase, “Isolation of opponent-colour mechanisms at increment threshold,” Vision Res. 27, 1017-1027 (1987).
[CrossRef] [PubMed]

P. Cavanagh, D. I. A. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428-1438 (1987).
[CrossRef] [PubMed]

1985 (3)

S. J. Anderson and D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147-1154 (1985).
[CrossRef] [PubMed]

R. F. Hess and G. T. Plant, “Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493-1500 (1985).
[CrossRef] [PubMed]

R. G. Vautin and B. M. Dow, “Color cell groups in foveal striate cortex of the behaving macaque,” J. Neurophysiol. 54, 273-292 (1985).
[PubMed]

1984 (3)

K. Kranda and P. E. King-Smith, “What can colour thresholds tell us about the nature of the underlying detection mechanisms,” Ophthalmic Physiol. Opt. 4, 83-87 (1984).
[PubMed]

M. B. Mandler and W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881-1887 (1984).
[CrossRef] [PubMed]

M. S. Livingstone and D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309-356 (1984).
[PubMed]

1983 (4)

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. (London) 337, 183-200 (1983).

D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?,” Vision Res. 23, 787-797 (1983).
[CrossRef] [PubMed]

C. R. Ingling Jr., E. Martinez, and A. L. Lewis, “Tonic-phasic-channel dichotomy and Crozier's law,” J. Opt. Soc. Am. 73, 183-189 (1983).
[CrossRef] [PubMed]

J. E. Thornton and E. N. Pugh, Jr., “Red/green colour opponency at detection threshold,” Science 219, 191-193 (1983).
[CrossRef] [PubMed]

1982 (2)

E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiol. (London) 330, 125-143 (1982).

D. C. Burr and J. Ross, “Contrast sensitivity at high velocities,” Vision Res. 22, 479-484 (1982).
[CrossRef] [PubMed]

1981 (2)

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357-1375 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341-1356 (1981).
[CrossRef] [PubMed]

1980 (1)

J. J. Wisowaty and R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895-909 (1980).
[CrossRef] [PubMed]

1979 (2)

A. B. Watson, “Probability summation over time,” Vision Res. 19, 515-522 (1979).
[CrossRef] [PubMed]

P. Gouras and E. Zrenner, “Enchancement of luminance flicker by color-opponent mechanisms,” Science 205, 587-589 (1979).
[CrossRef] [PubMed]

1978 (2)

C. R. Michael, “Color-sensitive complex cells in monkey striate cortex,” J. Neurophysiol. 41, 1250-1266 (1978).
[PubMed]

C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233-1249 (1978).
[PubMed]

1977 (2)

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vision Res. 17, 653-656 (1977).
[CrossRef] [PubMed]

J. Bacon and P. E. King-Smith, “The detection of line segments,” Perception 6, 125-131 (1977).
[CrossRef] [PubMed]

1976 (1)

1975 (2)

P. E. King-Smith and J. J. Kulikowski, “Pattern and flicker detection analysed by subthreshold summation,” J. Physiol. (London) 249, 519-548 (1975).

D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371-372 (1975).
[CrossRef] [PubMed]

1973 (3)

J. J. Kulikowski and D. J. Tolhurst, “Psychophysical evidence for sustained and transient detectors in human vision,” J. Physiol. (London) 232, 149-162 (1973).

C. R. Ingling Jr. and B. A. Drum, “How neural adaptation changes chromaticity coordinates,” J. Opt. Soc. Am. 63(3), 369-373 (1973).
[CrossRef] [PubMed]

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1973).

1971 (2)

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180-184 (1971).
[CrossRef] [PubMed]

J. J. Kulikowski, “Some stimulus parameters affecting spatial and temporal resolution of human vision,” Vision Res. 11, 83-93 (1971).
[CrossRef] [PubMed]

1966 (3)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669-682 (1966).
[CrossRef] [PubMed]

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

J. G. Robson, “Spatial and temporal contrast sensitivity of the human eye,” J. Opt. Soc. Am. 56, 1141-1150 (1966).
[CrossRef]

1958 (1)

Alais, D.

J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009).
[CrossRef]

Anderson, S. J.

S. J. Anderson and D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147-1154 (1985).
[CrossRef] [PubMed]

Anstis, S. M.

Bacon, J.

J. Bacon and P. E. King-Smith, “The detection of line segments,” Perception 6, 125-131 (1977).
[CrossRef] [PubMed]

Baldwin, L. A.

A. G. Shapiro, L. A. Baldwin, and J. D. Mollon, “The S and L-M chromatic systems have matched temporal processing characteristics only at low-light levels,” Perception 31, S68b (2002).

Baraas, R. C.

R. C. Baraas, J. J. Kulikowski, and A. R. Robson, “Spatial edges reduce colour selectivity,” Perception 27S, 168-169 (1998).

Boynton, R. M.

J. J. Wisowaty and R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895-909 (1980).
[CrossRef] [PubMed]

Burr, D. C.

S. J. Anderson and D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147-1154 (1985).
[CrossRef] [PubMed]

D. C. Burr and J. Ross, “Contrast sensitivity at high velocities,” Vision Res. 22, 479-484 (1982).
[CrossRef] [PubMed]

Calkins, D. J.

D. J. Calkins, “Representation of cone signals in the primate retina,” J. Opt. Soc. Am. A 17, 597-606 (2000).
[CrossRef]

D. J. Calkins, J. E. Thornton, and E. N. Pugh, Jr., “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349-2367 (1992).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

Carden, D.

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49-56 (1998).
[CrossRef] [PubMed]

P. E. King-Smith and D. Carden, “Luminance and opponent-colour contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709-717 (1976).
[CrossRef] [PubMed]

Cass, J.

J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009).
[CrossRef]

Cavanagh, P.

Chaparro, A.

C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).

C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).

Clifford, C. W. G.

J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009).
[CrossRef]

C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
[CrossRef]

Dacey, D. M.

D. M. Dacey and B. B. Lee, “The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature (London) 367, 731-735 (1994).
[CrossRef]

De Valois, K. K.

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. 5 (Academic, 1975), pp. 117-166.

De Valois, R. L.

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. 5 (Academic, 1975), pp. 117-166.

DePriest, D. D.

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189-208 (1991).
[CrossRef] [PubMed]

Dow, B. M.

T. Yoshioka and B. M. Dow, “Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 71-88 (1996).
[CrossRef] [PubMed]

T. Yoshioka, B. M. Dow, and R. G. Vautin, “Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 51-70 (1996).
[CrossRef] [PubMed]

R. G. Vautin and B. M. Dow, “Color cell groups in foveal striate cortex of the behaving macaque,” J. Neurophysiol. 54, 273-292 (1985).
[PubMed]

Dreher, B.

T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002).
[CrossRef] [PubMed]

T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998).
[CrossRef]

Drum, B. A.

Eskew, R. T.

C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).

Ewens, W. J.

W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics: An Introduction (Springer Verlag, 2001).

Foster, D. H.

R. S. Snelgar, D. H. Foster, and M. O. Scase, “Isolation of opponent-colour mechanisms at increment threshold,” Vision Res. 27, 1017-1027 (1987).
[CrossRef] [PubMed]

D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?,” Vision Res. 23, 787-797 (1983).
[CrossRef] [PubMed]

Frigo, M.

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proc. IEEE 93, 216-231 (2005). URL http://www.fftw.org/.
[CrossRef]

Gilbert, C. D.

D. Y. Ts'o and C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712-1728 (1988).
[PubMed]

Goodchild, A. K.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
[CrossRef] [PubMed]

Gouras, P.

P. Gouras and E. Zrenner, “Enchancement of luminance flicker by color-opponent mechanisms,” Science 205, 587-589 (1979).
[CrossRef] [PubMed]

Grant, G. R.

W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics: An Introduction (Springer Verlag, 2001).

Hadingham, P. T.

J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995).
[PubMed]

Harwerth, R. S.

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180-184 (1971).
[CrossRef] [PubMed]

Hawken, M. J.

E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409-416 (2001).
[CrossRef] [PubMed]

Hayhoe, M. M.

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357-1375 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341-1356 (1981).
[CrossRef] [PubMed]

Hess, R. F.

R. F. Hess and R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47-59 (1992).
[CrossRef] [PubMed]

R. F. Hess, K. T. Mullen, and E. Zrenner, “Human photopic vision with only short wavelength cones: post-receptoral properties,” J. Physiol. (London) 417, 151-172 (1989).

R. F. Hess and G. T. Plant, “Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493-1500 (1985).
[CrossRef] [PubMed]

Hicks, T. P.

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. (London) 337, 183-200 (1983).

Hough, P.

J. Meza, R. Oliva, P. Hough, and P. Williams, “OPT++: An Object Oriented Toolkit for Nonlinear Optimization,” ACM Trans. Math. Softw. 33(2), Article No. 12 (2007). URL http://doi. acm.org/10.1145/1236463.1236467.

Hubel, D. H.

M. S. Livingstone and D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309-356 (1984).
[PubMed]

Ingling, C. R.

Johnson, E. N.

E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409-416 (2001).
[CrossRef] [PubMed]

Johnson, S. G.

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proc. IEEE 93, 216-231 (2005). URL http://www.fftw.org/.
[CrossRef]

Kaplan, E.

E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiol. (London) 330, 125-143 (1982).

Kelly, D. H.

D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371-372 (1975).
[CrossRef] [PubMed]

King-Smith, P. E.

K. Kranda and P. E. King-Smith, “What can colour thresholds tell us about the nature of the underlying detection mechanisms,” Ophthalmic Physiol. Opt. 4, 83-87 (1984).
[PubMed]

J. Bacon and P. E. King-Smith, “The detection of line segments,” Perception 6, 125-131 (1977).
[CrossRef] [PubMed]

P. E. King-Smith and D. Carden, “Luminance and opponent-colour contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709-717 (1976).
[CrossRef] [PubMed]

P. E. King-Smith and J. J. Kulikowski, “Pattern and flicker detection analysed by subthreshold summation,” J. Physiol. (London) 249, 519-548 (1975).

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1973).

Koenderink, J. J.

J. J. Koenderink, “Scale-Time,” Biol. Cybern. 58, 159-162 (1988).
[CrossRef]

Kranda, K.

K. Kranda and P. E. King-Smith, “What can colour thresholds tell us about the nature of the underlying detection mechanisms,” Ophthalmic Physiol. Opt. 4, 83-87 (1984).
[PubMed]

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vision Res. 17, 653-656 (1977).
[CrossRef] [PubMed]

Krauskopf, J.

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649-669 (1990).
[PubMed]

Kremers, J.

Kronauer, R. E.

C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).

C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).

Kulikowski, J. J.

T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002).
[CrossRef] [PubMed]

D. M. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

R. C. Baraas, J. J. Kulikowski, and A. R. Robson, “Spatial edges reduce colour selectivity,” Perception 27S, 168-169 (1998).

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49-56 (1998).
[CrossRef] [PubMed]

T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998).
[CrossRef]

Sharanjeet-Kaur, J. J. Kulikowski, and V. Walsh, “The detection and discrimination of categorical yellow,” Ophthalmic Physiol. Opt. 17, 32-37 (1997).
[CrossRef] [PubMed]

A. Nacer, I. J. Murray, and J. J. Kulikowski, “Balancing sensitivity of human chromatic opponent mechanisms by adaptation,” J. Physiol. (London) P21, 485P (1995).

J. J. Kulikowski and V. Walsh, “Colour vision: isolating mechanisms in overlapping streams,” Prog. Brain Res. 95, 417-426 (1993).
[CrossRef] [PubMed]

K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733-742 (1990).
[CrossRef] [PubMed]

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vision Res. 17, 653-656 (1977).
[CrossRef] [PubMed]

P. E. King-Smith and J. J. Kulikowski, “Pattern and flicker detection analysed by subthreshold summation,” J. Physiol. (London) 249, 519-548 (1975).

J. J. Kulikowski and D. J. Tolhurst, “Psychophysical evidence for sustained and transient detectors in human vision,” J. Physiol. (London) 232, 149-162 (1973).

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1973).

J. J. Kulikowski, “Some stimulus parameters affecting spatial and temporal resolution of human vision,” Vision Res. 11, 83-93 (1971).
[CrossRef] [PubMed]

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

A. Nacer, I. J. Murray, Sharanjeet-Kaur, and J. J. Kulikowski, “Selectivity limits of spectral sensitivity functions for chromatic and achromatic mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 83-91.

D. J. McKeefry and J. J. Kulikowski, “Spatial and temporal sensitivities of colour discrimination mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 163-172.

M. H. A. Russell, J. J. Kulikowski, and I. J. Murray, “Spatial frequency dependence of the human visual evoked potential,” in Evoked Potentials III (Butterworth, 1987), pp. 231-239.

J. J. Kulikowski and V. Walsh, “Demonstration of binocular fusion of color and texture,” in Early Vision and Beyond, T.Papathomas, ed. (MIT Press, 1995), pp. 27-32.

J. J. Kulikowski, “Spatial and temporal properties of chromatic processing: Separation of colour from chromatic pattern mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd., 1997), pp.133-146.

Lange Dzn, H. D.

Lee, B. B.

T. Yeh, B. B. Lee, and J. Kremers, “Temporal response of ganglion cells of the macaque retina to cone-specific modulation,” J. Opt. Soc. Am. A 12, 456-464 (1995).
[CrossRef]

D. M. Dacey and B. B. Lee, “The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature (London) 367, 731-735 (1994).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223-2236 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433-1442 (1989).
[PubMed]

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. (London) 337, 183-200 (1983).

Lennie, P.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carying S-cone signals in Macaque,” J. Neurosci. 28, 4078-4087 (2008).
[CrossRef] [PubMed]

P. Lennie, J. Pokorny, and V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283-1293 (1993).
[CrossRef] [PubMed]

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649-669 (1990).
[PubMed]

Levitt, J. B.

J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995).
[PubMed]

Lewis, A. L.

Lipnicki, D. M.

T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002).
[CrossRef] [PubMed]

Livingstone, M. S.

M. S. Livingstone and D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309-356 (1984).
[PubMed]

Lund, J. S.

J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995).
[PubMed]

MacLeod, D. I.

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357-1375 (1981).
[CrossRef] [PubMed]

MacLeod, D. I. A.

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189-208 (1991).
[CrossRef] [PubMed]

P. Cavanagh, D. I. A. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428-1438 (1987).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341-1356 (1981).
[CrossRef] [PubMed]

Makous, W.

M. B. Mandler and W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881-1887 (1984).
[CrossRef] [PubMed]

Mandler, M. B.

M. B. Mandler and W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881-1887 (1984).
[CrossRef] [PubMed]

Marré, M.

M. Marré, “The investigation of acquired colour vision deficiencies,” in Colour (Adam Hilger, 1973), pp. 99-135.

Martin, P. R.

C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
[CrossRef]

P. R. Martin, “Colour processing in the primate retina: recent progress,” J. Physiol. (London) 513, 631-638 (1998).
[CrossRef]

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
[CrossRef] [PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223-2236 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433-1442 (1989).
[PubMed]

Martinez, E.

Maunsell, J. H.

W. H. Merigan and J. H. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347-352 (1990).
[CrossRef]

McKeefry, D. J.

D. J. McKeefry and J. J. Kulikowski, “Spatial and temporal sensitivities of colour discrimination mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 163-172.

McKeefry, D. M.

D. M. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

Merigan, W. H.

W. H. Merigan and J. H. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347-352 (1990).
[CrossRef]

Metha, A. B.

Meza, J.

J. Meza, R. Oliva, P. Hough, and P. Williams, “OPT++: An Object Oriented Toolkit for Nonlinear Optimization,” ACM Trans. Math. Softw. 33(2), Article No. 12 (2007). URL http://doi. acm.org/10.1145/1236463.1236467.

Michael, C. R.

C. R. Michael, “Color-sensitive complex cells in monkey striate cortex,” J. Neurophysiol. 41, 1250-1266 (1978).
[PubMed]

C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233-1249 (1978).
[PubMed]

Mollon, J. D.

A. G. Shapiro, L. A. Baldwin, and J. D. Mollon, “The S and L-M chromatic systems have matched temporal processing characteristics only at low-light levels,” Perception 31, S68b (2002).

Mullen, K. T.

Murray, I. J.

D. M. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

A. Nacer, I. J. Murray, and J. J. Kulikowski, “Balancing sensitivity of human chromatic opponent mechanisms by adaptation,” J. Physiol. (London) P21, 485P (1995).

A. Nacer, I. J. Murray, Sharanjeet-Kaur, and J. J. Kulikowski, “Selectivity limits of spectral sensitivity functions for chromatic and achromatic mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 83-91.

M. H. A. Russell, J. J. Kulikowski, and I. J. Murray, “Spatial frequency dependence of the human visual evoked potential,” in Evoked Potentials III (Butterworth, 1987), pp. 231-239.

Nacer, A.

A. Nacer, I. J. Murray, and J. J. Kulikowski, “Balancing sensitivity of human chromatic opponent mechanisms by adaptation,” J. Physiol. (London) P21, 485P (1995).

A. Nacer, “The interaction between chromatic and achromatic mechanisms of human colour vision: Limitations of sensitivity,” Ph.D. thesis (Department of Optometry and Vision Sciences, UMIST, Manchester, UK, 1990).

A. Nacer, I. J. Murray, Sharanjeet-Kaur, and J. J. Kulikowski, “Selectivity limits of spectral sensitivity functions for chromatic and achromatic mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 83-91.

Oliva, R.

J. Meza, R. Oliva, P. Hough, and P. Williams, “OPT++: An Object Oriented Toolkit for Nonlinear Optimization,” ACM Trans. Math. Softw. 33(2), Article No. 12 (2007). URL http://doi. acm.org/10.1145/1236463.1236467.

Plant, G. T.

R. F. Hess and G. T. Plant, “Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493-1500 (1985).
[CrossRef] [PubMed]

Pokorny, J.

Pugh, E. N.

D. J. Calkins, J. E. Thornton, and E. N. Pugh, Jr., “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349-2367 (1992).
[CrossRef] [PubMed]

J. E. Thornton and E. N. Pugh, Jr., “Red/green colour opponency at detection threshold,” Science 219, 191-193 (1983).
[CrossRef] [PubMed]

Robson, A.

T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998).
[CrossRef]

Robson, A. R.

R. C. Baraas, J. J. Kulikowski, and A. R. Robson, “Spatial edges reduce colour selectivity,” Perception 27S, 168-169 (1998).

Robson, J. G.

Ross, J.

D. C. Burr and J. Ross, “Contrast sensitivity at high velocities,” Vision Res. 22, 479-484 (1982).
[CrossRef] [PubMed]

Russell, M. H. A.

M. H. A. Russell, J. J. Kulikowski, and I. J. Murray, “Spatial frequency dependence of the human visual evoked potential,” in Evoked Potentials III (Butterworth, 1987), pp. 231-239.

Ryu, A.

C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).

Scase, M. O.

R. S. Snelgar, D. H. Foster, and M. O. Scase, “Isolation of opponent-colour mechanisms at increment threshold,” Vision Res. 27, 1017-1027 (1987).
[CrossRef] [PubMed]

Sclar, G.

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649-669 (1990).
[PubMed]

Sefton, A. E.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
[CrossRef] [PubMed]

Shapiro, A. G.

A. G. Shapiro, L. A. Baldwin, and J. D. Mollon, “The S and L-M chromatic systems have matched temporal processing characteristics only at low-light levels,” Perception 31, S68b (2002).

Shapley, R.

E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409-416 (2001).
[CrossRef] [PubMed]

Shapley, R. M.

E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiol. (London) 330, 125-143 (1982).

Sharanjeet-Kaur,

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49-56 (1998).
[CrossRef] [PubMed]

Sharanjeet-Kaur, J. J. Kulikowski, and V. Walsh, “The detection and discrimination of categorical yellow,” Ophthalmic Physiol. Opt. 17, 32-37 (1997).
[CrossRef] [PubMed]

A. Nacer, I. J. Murray, Sharanjeet-Kaur, and J. J. Kulikowski, “Selectivity limits of spectral sensitivity functions for chromatic and achromatic mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 83-91.

Smith, V. C.

Snelgar, R. S.

R. S. Snelgar, D. H. Foster, and M. O. Scase, “Isolation of opponent-colour mechanisms at increment threshold,” Vision Res. 27, 1017-1027 (1987).
[CrossRef] [PubMed]

D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?,” Vision Res. 23, 787-797 (1983).
[CrossRef] [PubMed]

Snowden, R. J.

R. F. Hess and R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47-59 (1992).
[CrossRef] [PubMed]

Solomon, S. G.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carying S-cone signals in Macaque,” J. Neurosci. 28, 4078-4087 (2008).
[CrossRef] [PubMed]

C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
[CrossRef]

Spehar, B.

J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009).
[CrossRef]

C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
[CrossRef]

Sperling, H. G.

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180-184 (1971).
[CrossRef] [PubMed]

Stockman, A.

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189-208 (1991).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).

C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).

Tailby, C.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carying S-cone signals in Macaque,” J. Neurosci. 28, 4078-4087 (2008).
[CrossRef] [PubMed]

Thornton, J. E.

D. J. Calkins, J. E. Thornton, and E. N. Pugh, Jr., “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349-2367 (1992).
[CrossRef] [PubMed]

J. E. Thornton and E. N. Pugh, Jr., “Red/green colour opponency at detection threshold,” Science 219, 191-193 (1983).
[CrossRef] [PubMed]

Tolhurst, D. J.

J. J. Kulikowski and D. J. Tolhurst, “Psychophysical evidence for sustained and transient detectors in human vision,” J. Physiol. (London) 232, 149-162 (1973).

Tolias, A. S.

C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).

Ts'o, D. Y.

D. Y. Ts'o and C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712-1728 (1988).
[PubMed]

Valberg, A.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223-2236 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433-1442 (1989).
[PubMed]

Vautin, R. G.

T. Yoshioka, B. M. Dow, and R. G. Vautin, “Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 51-70 (1996).
[CrossRef] [PubMed]

R. G. Vautin and B. M. Dow, “Color cell groups in foveal striate cortex of the behaving macaque,” J. Neurophysiol. 54, 273-292 (1985).
[PubMed]

Vidyasagar, T. R.

T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002).
[CrossRef] [PubMed]

T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998).
[CrossRef]

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. (London) 337, 183-200 (1983).

Walsh, V.

Sharanjeet-Kaur, J. J. Kulikowski, and V. Walsh, “The detection and discrimination of categorical yellow,” Ophthalmic Physiol. Opt. 17, 32-37 (1997).
[CrossRef] [PubMed]

J. J. Kulikowski and V. Walsh, “Colour vision: isolating mechanisms in overlapping streams,” Prog. Brain Res. 95, 417-426 (1993).
[CrossRef] [PubMed]

J. J. Kulikowski and V. Walsh, “Demonstration of binocular fusion of color and texture,” in Early Vision and Beyond, T.Papathomas, ed. (MIT Press, 1995), pp. 27-32.

Watson, A. B.

A. B. Watson, “Probability summation over time,” Vision Res. 19, 515-522 (1979).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669-682 (1966).
[CrossRef] [PubMed]

White, A. J. R.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
[CrossRef] [PubMed]

Wilder, H. D.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
[CrossRef] [PubMed]

Williams, D. R.

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357-1375 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341-1356 (1981).
[CrossRef] [PubMed]

Williams, P.

J. Meza, R. Oliva, P. Hough, and P. Williams, “OPT++: An Object Oriented Toolkit for Nonlinear Optimization,” ACM Trans. Math. Softw. 33(2), Article No. 12 (2007). URL http://doi. acm.org/10.1145/1236463.1236467.

Wisowaty, J. J.

J. J. Wisowaty and R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895-909 (1980).
[CrossRef] [PubMed]

Wu, Q.

J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995).
[PubMed]

Yeh, T.

Yoshioka, T.

T. Yoshioka, B. M. Dow, and R. G. Vautin, “Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 51-70 (1996).
[CrossRef] [PubMed]

T. Yoshioka and B. M. Dow, “Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 71-88 (1996).
[CrossRef] [PubMed]

Zaidi, Q.

C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
[CrossRef]

Zrenner, E.

R. F. Hess, K. T. Mullen, and E. Zrenner, “Human photopic vision with only short wavelength cones: post-receptoral properties,” J. Physiol. (London) 417, 151-172 (1989).

P. Gouras and E. Zrenner, “Enchancement of luminance flicker by color-opponent mechanisms,” Science 205, 587-589 (1979).
[CrossRef] [PubMed]

Behav. Brain Res. (2)

T. Yoshioka and B. M. Dow, “Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 71-88 (1996).
[CrossRef] [PubMed]

T. Yoshioka, B. M. Dow, and R. G. Vautin, “Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 51-70 (1996).
[CrossRef] [PubMed]

Biol. Cybern. (1)

J. J. Koenderink, “Scale-Time,” Biol. Cybern. 58, 159-162 (1988).
[CrossRef]

Eur. J. Neurosci. (3)

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997).
[CrossRef] [PubMed]

T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002).
[CrossRef] [PubMed]

T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998).
[CrossRef]

J. Anat. (1)

J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995).
[PubMed]

J. Neurophysiol. (3)

C. R. Michael, “Color-sensitive complex cells in monkey striate cortex,” J. Neurophysiol. 41, 1250-1266 (1978).
[PubMed]

C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233-1249 (1978).
[PubMed]

R. G. Vautin and B. M. Dow, “Color cell groups in foveal striate cortex of the behaving macaque,” J. Neurophysiol. 54, 273-292 (1985).
[PubMed]

J. Neurosci. (5)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carying S-cone signals in Macaque,” J. Neurosci. 28, 4078-4087 (2008).
[CrossRef] [PubMed]

M. S. Livingstone and D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309-356 (1984).
[PubMed]

D. Y. Ts'o and C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712-1728 (1988).
[PubMed]

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433-1442 (1989).
[PubMed]

P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649-669 (1990).
[PubMed]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (8)

J. Physiol. (London) (11)

E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiol. (London) 330, 125-143 (1982).

T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. (London) 337, 183-200 (1983).

P. R. Martin, “Colour processing in the primate retina: recent progress,” J. Physiol. (London) 513, 631-638 (1998).
[CrossRef]

R. F. Hess, K. T. Mullen, and E. Zrenner, “Human photopic vision with only short wavelength cones: post-receptoral properties,” J. Physiol. (London) 417, 151-172 (1989).

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

J. J. Kulikowski and D. J. Tolhurst, “Psychophysical evidence for sustained and transient detectors in human vision,” J. Physiol. (London) 232, 149-162 (1973).

A. Nacer, I. J. Murray, and J. J. Kulikowski, “Balancing sensitivity of human chromatic opponent mechanisms by adaptation,” J. Physiol. (London) P21, 485P (1995).

C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).

C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).

P. E. King-Smith and J. J. Kulikowski, “Pattern and flicker detection analysed by subthreshold summation,” J. Physiol. (London) 249, 519-548 (1975).

P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1973).

J. Vision (2)

J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009).
[CrossRef]

C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003).
[CrossRef]

Nat. Neurosci. (1)

E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409-416 (2001).
[CrossRef] [PubMed]

Nature (London) (1)

D. M. Dacey and B. B. Lee, “The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature (London) 367, 731-735 (1994).
[CrossRef]

Ophthalmic Physiol. Opt. (3)

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49-56 (1998).
[CrossRef] [PubMed]

Sharanjeet-Kaur, J. J. Kulikowski, and V. Walsh, “The detection and discrimination of categorical yellow,” Ophthalmic Physiol. Opt. 17, 32-37 (1997).
[CrossRef] [PubMed]

K. Kranda and P. E. King-Smith, “What can colour thresholds tell us about the nature of the underlying detection mechanisms,” Ophthalmic Physiol. Opt. 4, 83-87 (1984).
[PubMed]

Perception (3)

J. Bacon and P. E. King-Smith, “The detection of line segments,” Perception 6, 125-131 (1977).
[CrossRef] [PubMed]

R. C. Baraas, J. J. Kulikowski, and A. R. Robson, “Spatial edges reduce colour selectivity,” Perception 27S, 168-169 (1998).

A. G. Shapiro, L. A. Baldwin, and J. D. Mollon, “The S and L-M chromatic systems have matched temporal processing characteristics only at low-light levels,” Perception 31, S68b (2002).

Proc. IEEE (1)

M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proc. IEEE 93, 216-231 (2005). URL http://www.fftw.org/.
[CrossRef]

Prog. Brain Res. (1)

J. J. Kulikowski and V. Walsh, “Colour vision: isolating mechanisms in overlapping streams,” Prog. Brain Res. 95, 417-426 (1993).
[CrossRef] [PubMed]

Science (4)

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180-184 (1971).
[CrossRef] [PubMed]

D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371-372 (1975).
[CrossRef] [PubMed]

P. Gouras and E. Zrenner, “Enchancement of luminance flicker by color-opponent mechanisms,” Science 205, 587-589 (1979).
[CrossRef] [PubMed]

J. E. Thornton and E. N. Pugh, Jr., “Red/green colour opponency at detection threshold,” Science 219, 191-193 (1983).
[CrossRef] [PubMed]

Vision Res. (18)

R. S. Snelgar, D. H. Foster, and M. O. Scase, “Isolation of opponent-colour mechanisms at increment threshold,” Vision Res. 27, 1017-1027 (1987).
[CrossRef] [PubMed]

D. J. Calkins, J. E. Thornton, and E. N. Pugh, Jr., “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349-2367 (1992).
[CrossRef] [PubMed]

D. M. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vision Res. 41, 245-255 (2001).
[CrossRef] [PubMed]

J. J. Wisowaty and R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895-909 (1980).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189-208 (1991).
[CrossRef] [PubMed]

D. C. Burr and J. Ross, “Contrast sensitivity at high velocities,” Vision Res. 22, 479-484 (1982).
[CrossRef] [PubMed]

J. J. Kulikowski, “Some stimulus parameters affecting spatial and temporal resolution of human vision,” Vision Res. 11, 83-93 (1971).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669-682 (1966).
[CrossRef] [PubMed]

M. B. Mandler and W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881-1887 (1984).
[CrossRef] [PubMed]

S. J. Anderson and D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147-1154 (1985).
[CrossRef] [PubMed]

R. F. Hess and G. T. Plant, “Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493-1500 (1985).
[CrossRef] [PubMed]

R. F. Hess and R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47-59 (1992).
[CrossRef] [PubMed]

D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?,” Vision Res. 23, 787-797 (1983).
[CrossRef] [PubMed]

A. B. Watson, “Probability summation over time,” Vision Res. 19, 515-522 (1979).
[CrossRef] [PubMed]

D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357-1375 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341-1356 (1981).
[CrossRef] [PubMed]

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vision Res. 17, 653-656 (1977).
[CrossRef] [PubMed]

R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (1)

W. H. Merigan and J. H. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347-352 (1990).
[CrossRef]

Other (10)

R. L. De Valois and K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. 5 (Academic, 1975), pp. 117-166.

D. J. McKeefry and J. J. Kulikowski, “Spatial and temporal sensitivities of colour discrimination mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 163-172.

M. H. A. Russell, J. J. Kulikowski, and I. J. Murray, “Spatial frequency dependence of the human visual evoked potential,” in Evoked Potentials III (Butterworth, 1987), pp. 231-239.

A. Nacer, I. J. Murray, Sharanjeet-Kaur, and J. J. Kulikowski, “Selectivity limits of spectral sensitivity functions for chromatic and achromatic mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 83-91.

J. Meza, R. Oliva, P. Hough, and P. Williams, “OPT++: An Object Oriented Toolkit for Nonlinear Optimization,” ACM Trans. Math. Softw. 33(2), Article No. 12 (2007). URL http://doi. acm.org/10.1145/1236463.1236467.

W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics: An Introduction (Springer Verlag, 2001).

M. Marré, “The investigation of acquired colour vision deficiencies,” in Colour (Adam Hilger, 1973), pp. 99-135.

A. Nacer, “The interaction between chromatic and achromatic mechanisms of human colour vision: Limitations of sensitivity,” Ph.D. thesis (Department of Optometry and Vision Sciences, UMIST, Manchester, UK, 1990).

J. J. Kulikowski and V. Walsh, “Demonstration of binocular fusion of color and texture,” in Early Vision and Beyond, T.Papathomas, ed. (MIT Press, 1995), pp. 27-32.

J. J. Kulikowski, “Spatial and temporal properties of chromatic processing: Separation of colour from chromatic pattern mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd., 1997), pp.133-146.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral sensitivity at 1 Hz as a function of wavelength is plotted for two observers, (a) RB and (b) JK . The curves for bars are shifted down by one and two log units, for clarity. Top curves, marked by open circles, are standard spectral sensitivity functions on a white background ( 3350 K ) with its characteristic peaks. Intrusion of the luminance mechanism makes the notch around 574 nm shallower as is shown by spectral sensitivity curve on yellow background ( 2520 K ) , marked by filled circles. Bar-like stimuli on a white background reduce spectral sensitivity in the blue range, only slightly for wide bars (open squares) and more substantial for narrow bars (open triangles). The 25 Hz homochromatic flicker function approximating the luminosity function is plotted for a narrow bar on white (dotted curve) only for comparison. Spectral sensitivity for bars on yellow background (filled squares and triangles) increases in the blue range, as expected. Error bars are 1 SD.

Fig. 2
Fig. 2

Results for (a) blue ( 450 nm ) and (b) yellow ( 574 nm ) spot stimuli on yellow background as a function of temporal frequency (Hz). The measured thresholds (for observers RB, JK, and AG) are shown as solid dots and the predicted sensitivity curves for the best-fitting models in each class are shown as lines. The solid line represents model M 01 ; the dashed line model M 02 ; and the dashed–dotted line model M 012 . The predicted sensitivity curves for the one-filter model M 0 give the least likely fits (for details see third row of Tables 2, 3, 5, 6) and are therefore not shown. The two-filter model M 01 is the model that fits the data for the blue spot best, whereas it is the three-filter model M 012 that fits the yellow spot best.

Fig. 3
Fig. 3

Results for blue ( 450 nm ) and yellow ( 574 nm ) bar-like stimuli on white or yellow backgrounds as a function of temporal frequency (Hz). Data (for observer RB); the conventions are as in Fig. 2. The two-filter model M 01 fits the results for the blue bar best, whereas it is the three-filter model M 012 that fits the yellow bar best.

Fig. 4
Fig. 4

Results for blue ( 450 nm ) and yellow ( 574 nm ) bar-like stimuli on white or yellow backgrounds as a function of temporal frequency (Hz). Data (for observer JK); the conventions are as in Fig. 2. The two-filter model M 01 fits the results for the blue bar best, whereas it is the three-filter model M 012 that fits the yellow bar best.

Fig. 5
Fig. 5

Results for blue ( 450 nm ) and yellow ( 574 nm ) bar-like stimuli on white or yellow backgrounds as a function of temporal frequency (Hz). Data (for observer AG); the conventions are as in Fig. 2. The two-filter model M 01 fits the results for the blue bar best, whereas it is the three-filter model M 012 that fits the yellow bar best.

Tables (6)

Tables Icon

Table 1 Parameters of the Gaussian Priors on the Parameters τ and σ a

Tables Icon

Table 2 Results for Blue ( 450 nm ) Stimuli on White or Yellow Backgrounds for Observer RB

Tables Icon

Table 3 Results for Blue ( 450 nm ) Stimuli on White or Yellow Backgrounds for Observer JK

Tables Icon

Table 4 Results for Blue ( 450 nm ) Stimuli on White or Yellow Backgrounds for Observer AG

Tables Icon

Table 5 Results for Yellow ( 574 nm ) Stimuli on Yellow Background for Observer RB

Tables Icon

Table 6 Results for Yellow ( 574 nm ) Stimuli on Yellow Background for Observer JK

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

( 1 P ( C , ν : τ , σ , β , A ) ) × P ( γ C , ν : τ , σ , β , A ) ,
P ( τ , σ , β , A ) × P ( Data | τ , σ , β , A ) .
P ( Data | τ , σ , β , A ) = j , k ( 1 P ( C j , k , ν j : τ , σ , β , A ) ) P ( γ C j , k , ν j : τ , σ , β , A ) .
P ( τ , σ , β , A ) = P ( τ , σ ) = j = 0 2 e ( f j ( τ , σ ) m j ) 2 ( 2 s j 2 ) 2 π s j 2 ,
h 0 ( t : τ , σ ) = exp { ( ln ( t τ ) ) 2 σ 2 } ,
h 1 ( t : τ , σ ) = d h 0 d t = ( 2 t σ 2 ) ln ( t τ ) exp { ( ln ( t τ ) ) 2 σ 2 } = ( 2 t σ 2 ) ln ( t τ ) h 0 ( t ) ,
h 2 ( t : τ , σ ) = d h 1 d t = ( 2 t 2 σ 4 ) [ 2 σ 4 ln ( t τ ) 2 + ln ( t τ ) 1 ] exp { ( ln ( t τ ) ) 2 σ 2 } = ( 2 t 2 σ 2 ) [ 2 σ 2 ( ln ( t τ ) ) 2 + ln ( t τ ) 1 ] h 0 ( t ) .
R j ( t ) = C g ( t : ν ) h j ( t : τ , σ ) = C 0 g ( t s : ν ) h j ( s : τ , σ ) d ,
P W ( C , ν : τ , σ , β , A ) = 2 T 0 T 1 j = 0 2 | A j R j ( t ) | β d t ,
T 0 = θ ν and T 1 = { ( θ ν ) + T , i n the constant T formulation ( θ + N ) ν , i n the constant N formulation } .. .
0 1 d θ θ ν ( θ + N ) ν j = 0 2 | A j R j ( t ) | β d t = 0 N ν j = 0 2 | A j R j ( t ) | β d t = N [ 0 1 ν j = 0 2 | A j R j ( t ) | β d t ] ,
0 1 d θ θ ν ( θ ν ) + T j = 0 2 | A j R j ( t ) | β d t = 0 1 d θ 0 T j = 0 2 | A j R j ( s + θ ν ) | β d s ,
0 1 d θ 0 T j = 0 2 | A j R j ( s + θ ν ) | β d s = 0 T d s 0 1 j = 0 2 | A j R j ( s + θ ν ) | β d θ .
0 T d s 0 1 j = 0 2 | A j R j ( s + θ ν ) | β d θ = 0 T d s 0 1 ν j = 0 2 | A j R j ( s + η ) | β ν d η = 0 T ν d s 0 1 ν j = 0 2 | A j R j ( s + η ) | β d η .
0 T ν d s 0 1 ν j = 0 2 | A j R j ( s + η ) | β d η = 0 T ν d s [ 0 1 ν j = 0 2 | A j R j ( η ) | β d η ] = ν T [ 0 1 ν j = 0 2 | A j R j ( η ) | β d η ] .
P ( C , ν : τ , σ , β , A ) = { 2 ν T [ 0 1 ν j = 0 2 | A j R j ( η ) | β d η ] , c onstant T formulation 2 N [ 0 1 ν j = 0 2 | A j R j ( η ) | β d η ] , c onstant N formulation } .
N [ 0 1 ν j = 0 2 | A j R j ( η ) | β d η ] = j = 0 2 N [ 0 1 ν | A j R j ( η ) | β d η ] = j = 0 2 N A j β [ 0 1 ν | R j ( η ) | β d η ] .
N ( A j ) β = ( α N ) ( A j α 1 β ) β = ( α N ) ( A j β α ) = N A j β .
P ( C , ν : τ , σ , β , A ) = { 2 ν [ 0 1 ν j = 0 2 | A j R j ( η ) | β d η ] , c onstant T formulation 2 [ 0 1 ν j = 0 2 | A j R j ( η ) | β d η ] , c onstant N formulation } .

Metrics