Abstract

This work presents an analytic treatment for photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. Focusing initially on the steady-state condition, the photon diffusion in these two geometries is solved in cylindrical coordinates by using modified Bessel functions and by applying the extrapolated boundary condition. For large cylinder diameter, the analytic solutions may be simplified to a format employing the physical source and its image source with respect to a semi-infinite geometry and a radius-dependent term to account for the shape and dimension of the cylinder. The analytic solutions and their approximations are evaluated numerically to demonstrate qualitatively the effect of the applicator curvature—either concave or convex—and the radius on the photon fluence rate as a function of the source–detector distance, in comparison with that in the semi-infinite geometry. This work is subjected to quantitative examination in a coming second part and possible extension to time-resolved analysis.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (78)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription